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ABSTRACT

The objective of this study is to investigate the application of Doppler radar

systems for global wind measurement. A model of the satellite-based radar wind

sounder (RAWS) is discussed, and many critical problems in the designing, such as

the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and

backscattering of radar signals from different types of clouds, are discussed along

with their computer simulaUons.

In addition, algorithms for measuring mean frequency of radar echoes, such

as the FFT estimator, the covariance estimator, and the estimators based on

autoregressive models, are discussed. Monte Carlo computer simulations were used

to compare the performance of these algorithms. Anti-alias methods are discussed

for the FFT and the autoregressive methods.

Several algorithms for reducing radar ambiguity were studied, such as

random phase coding methods and staggered PRF methods. Computer simulations

showed that these methods are not applicable to the RAWS because of the broad

spectral widths of the radar echoes from clouds. A waveform modulation method

using the concept of spread spectrum and correlation detection was developed to

solve the radar ambiguity. Radar ambiguity functions were used to analyze the

effective signal-to-noise ratios for the waveform modulaUon method. The result

showed that, with suitable bandwidth product and modulation of the waveform,

this method can achieve the desired maximum range and maximum frequency of

the radar system.
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Chapter 1

Introduction

1.0 RADAR REMOTE SENSING

Since the early 1960s, the field of radar remote sensing has grown into an

important technology for scientific research. Radar remote sensing has been

applied in the areas of 1) astronomical studies, 2) military applications, 3)

environmental monitoring, and 4) meteorology. The importance of radar remote

sensing can be attributed to two predominant factors: a) radars do not require the

sun as a source of illumination, and b) operating in the microwave region, a radar

signal can penetrate fog. clouds, and to some extent precipitation (rain, or snow).

During the past, radar remote sensing has found wide applications in

meteorology, such as storm observation and forecasting. For example, ground-

based radars are widely used for detecting severe weather and measuring rain-fall

rate [1-2]. Ground-based Doppler radars, most of them operated in very-high

frequency (VHF) and ultra-high frequency (UHF), are used for detecting turbulence,

local wind field etc [3-5]. Recently, S band ground-based Doppler radars were

developed to detect severe weather, precipitation and velocity fields [6]. As global

environmental study becomes more and more important, spaceborne radar systems

are anticipated to become more crucial in monitoring global environment, for

instance, measuring rain-fall rate [7].

In this study, we discuss one potential application for radar remote sensing

w using a spaceborne Doppler radar system to monitor the global wind fields.

Numerous ground-based VHF and UHF Doppler radar systems are being used in

measuring turbulence and local wind, and recently some microwave radar systems

were used to measure clouds [8]. However, few spaceborne Doppler radar systems

have been studied for global wind measurement purposes.
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In this dissertation,wecarryout a systemstudyof a spaceborneradarwind
sounder. The major difficulties treated concerning the implementation of a
spacebomeDopplerradarwind sounderincludepowerrequirements,antennascan

pattern, algorithms for measuring mean frequencyof Doppler shifts of radar

signals, removal of frequencyambiguity, and compensatingthe Doppler shift

caused by satellite motion. In addition to theoretical analysis, computer

simulations were used to evaluate the system performance and to compare

algorithms for measuring mean Doppler frequency of the radar signal and

algorithms for removal of radar-frequency ambiguity and range ambiguity.

1.1 BACKGROUND

1.1.1 NEED FOR GLOBAL WIND DATA

The importance of investigating a spaceborne Doppler radar for wind

measurement applications arises from the need for global wind data for both

operational and scientific-research applications. As pointed out in [9], "Knowledge

of the global wind field is widely recognized as fundamental to advancing our

understanding and prediction of the total Earth system. Yet, because wind profiles

are primarily measured by land-based rawinsondes, the oceanic areas (covering

roughly three quarters of the Earth's surface) and many regions of the less-

developed southern hemisphere land areas are poorly observed. The gap between our

requirements for global wind data and their availability continues to widen. For

example, as faster computers become available to model the atmosphere with ever

increasing resolution and sophistication, our ability to do so will be hampered

because of the lack of data, particularly wind profiles."

An improved understanding of the atmospheric wind field is essential for

purposes such as understanding the physics of the atmosphere, weather forecasting,

and many others. One of the most important applications for global wlnd data is in

numerical weather prediction (NWP), a technique on which modem weather

forecasts are based. Numerical weather prediction utilizes basic hydrodynamic and

thermodynamic equations to predict the future states of the environment from the

-2-



present states [10]. As an initial value problem,NWPdependscritically on the
accurate specificationof the state at time zero. If the models used in weather

prediction are correct, then the improvement in weather prediction largely depends

on the observation and measurement of the state of the weather. This view is

generally shared by the numerical prediction community [I 1].

Significant progress has been made in NWP in recent years, especially with

the development of accurate global numerical weather prediction models, improved

global coverage of the atmosphere provided by satellite observing systems, and with

the development of high speed computers. However, the current weather forecasts

are still not close to the theoretical limit of dynamic predictability, generally

accepted to be about two weeks. Further improvements of weather forecasts are

considered necessary in the following aspects: the observations that provide the

initial data for the models, the objective analysis techniques, and the correctness of

the weather models [12].

The variables used in NWP are temperature, pressure, and wind. The early

NWP models were designed to use only pressure and temperature data. Winds were

derived from the mass observations using the geostrophic relationship. This

relationship assumes that the latitudinally dependent Coriolis force [13] is

balanced by the pressure gradient force. This was a natural choice because pressure

observations were more abundant and more accurate than wind observations.

Recently, however, it has become increasingly clear that wind data are extremely

effective for use in numerical weather prediction. Two reasons for this are

explained by Kalnay, et al. [14]. The first reason is derived from the concept of

geostrophic adjustment. For most scales of importance to numerical weather

prediction, the models effectively retain wind data incorporated into the initial

conditions. Specifically, small-scale pressure-height variations do not result in

small-scale changes in the wind field. Instead, they are rapidly dispersed as gravity

waves. In other words, NWP models accept the wind data more readily than mass

data for scales which can be observed.

The second reason that winds are an extremely effective source of data comes

from the weU-known fact that integration of noisy data reduces the effect of random

noise, whereas differentiation enhances the effect of noise. The geostrophic

-3-



relationship impliesthat wind is proportionalto the horizontalpressuregradient.
At increasinglysmallerscales,the geostrophicrelationship is often invalid so that

wind becomesan increasinglymoreaccuratemeasureof atmospherestatethan do
the pressureorheightmeasurements.

In addition, the wind observationsare especiallyimportant in the Tropics,

sincethe quasi-geostrophicbalance,presentin the mid-latitudes,breaksdown. As
a result, the windfield cannotbedeterminedfromthe pressureor height. Moreover,

a reliableestimateofthe divergentcomponentof the wind is necessaryto depictthe
convectiveareasin the Tropics that providea sourceof energyfor the equatorial

regionsand at times the mid-latitudes. Therefore,wind measurementsare more
important than temperaturesoundingwhereverthe winds arenot in balancewith

the massfield. This meansthat they are requiredto faithfully predict the smaller

scalesystemsat all latitudes and all scalesin theTropics. For the largerscalesin
told-latitudes, temperaturedata are probablymore important, providedthey are
accurateto about+ I°C.

Forecast simulations, using wind data in the Tropics and surface wind data

over the oceans, show significant increases in predictive skill. Global climate

modeling (GCM) simulation studies show that an rms wind error of 2m/s is

equivalent to an rms temperature error of about Ioc outside of the Tropics. Thus, a

wlnd-measuring system that could achieve such accuracy would be equivalent to the

best that is possible by any passive temperature measurement system now available

or under consideration [I I].

1.1.2 INSTRUMENTS USED FOR GLOBAL MEASUREMENT OF WIND

Today's operational wind-velocity observing systems are basically

implemented in two forms: those mounted on instrumented towers, and mobile

instruments mounted aboard ships, aircraft, or balloons. These instruments are

very sparse and/or inherently unable to provide temporal and spatial coverage of

the global atmosphere at short time intervals. A unique opportunity to measure

wind with global coverage of the atmosphere is offered by remote-sensing

instruments mounted on spacecraft. Such instruments could provide observations
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even in those regionsnot coveredby the conventionalground-basedmonitoring
network(examplesarethe oceansandmostof theSouthemHemisphere).

Effortshavebeenundertakenbyvariousoperationalandresearchcentersto

assessquantitatively,by meansof observing-systemsimulation experiments,the
potential usefulnessof a spaceborneglobal wind sensor and the observational

requirementsthat must bemetto forecastvariousatmosphericphenomena[12-14].
The cost,complexity,and spacecraftconstraintsindicate that satellite-basedwind

sensorswould be most useful in monitoring only the large scale atmospheric

motions driving the weathersystems,while smaller scalemotions may be more

appropriatelyresolvedbyground-basedsystems.It hasbeenconcludedthat global,
twice-daffymeasurements,with the accuraciesand resolutions summarized in

Table1.1,would result in moreaccuratemedium-range(upto fivedays)forecastsin

the NorthernHemisphere,overwhichmost of the conventional,ground-basedwind

sensors(rawinsondenetwork)in operationtodayareconcentrated.A majorimpact
is to beexpectedfor forecastingin the sparselyinstrumentedSouthernHemisphere,

wheretheusefulnessof forecastsmaybeadvancedby asmuchas24 hours[15].

Table 1.1 Globaland SynopticScaleObservationalRequirements
Horizontal resolution
Vertical resolution

Temporal resolution

Accuracyofthe wind component

Directionalaccuracy

100km (meso-ascale)

1km (0.5km in theboundarylayerandin

thevicinity of theJetstream)
6 hour

1-2m/s in the lowertroposphere

2-5m/s in theuppertroposphere

+ 10 degree

Recognition that only a space-based monitoring system might have the

capability to provide wind data throughout the troposphere on a global scale has

prompted researchers to consider new remote wind-measuring techniques. A

number of active and passive sensing instruments have been proposed, and some

have already been experimentally tested [16-22]. Their main performance

characteristics are listed in Table 1.2 [15]. It is apparent that most of these
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techniques are unable to satisfy the demands for increasing measurement accuracy

at better horizontal and vertical resolutions. This is the case for all passive sensors

and the scatterometers. On the other hand, excessive size and power consumption

limit the utilization of Doppler radars for wind measurement from clear air in

space.

Table 1.2. Characteristics of various spacebome wind sensors

Instnmaent Horizontal Vertical Temporal Accuracy Coverage

(kin) (kin) (h) (m/s)
Passive

Limitations

High-resolution 125 4 24 < 5 Middle/upper Low reolution and

Doppler imagers troposphere; accuracy; no tro-

Stratosphere posphere coverage

Electro-optical 150 5 24 < 5 Stratosphere Low resolution

modulation and and accuracy; no

correlatiors mesosphere troposphere

coverage

Cloud-motion 20-50 none 0.1 to 1 2 10,000 km 2 No global cover-
imagers age. No venial

profiles

Active

Doppler radars 10 0.2 < 0.1 1 In precipitat- Excessive size

ing systems; and power

regional consumption

Scatterometers 25 none 12 + 10% Global Low accuracy, no

oceanic vertical prof'des
surface

Doppler lidars 100 0.2 to 1 12 1 to 3 Global Immature tech-

lroposphere nology; no

coverage in
cloudy regions

By comparing the performance of different instruments listed in Table 1.2, it

can be concluded that Doppler Lidars are viable instruments able to provide, in the

near future, wind information as a function of height in the troposphere from clear
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air regions. The information could be obtained on a global scale except for the

cloudy regions, in a grid form suitable for use in operational meteorology, and with

the required resolutions and accuracies [15]. Since the Doppler radars can also

provide the required temporal and spatial resolutions, they can fill in the gaps in

coverage of lidars caused by clouds and rain. Excessive power requirements for

clear air Doppler radar systems limit the use of radars to wind measurements in

cloudy regions or precipitation systems.

1.1.3 REQUIRED OBSERVATION RESOLUTIONS

Table 1.1 listed the observational requirements for global and synoptic scale

required in numerical weather prediction modeling. Table 1.3 presents the

observational resolution generally required to nowcast or forecast various

mesoscale phenomena, as addressed in a variety of documents (e.g., Federal

Coordinator for Meteorological Services and Supporting Research, 1982; The

National Stormscale Operational and R research Meteorology (STORM)

Program(NCAR, 1984); Shenk et at., 1985; National Environmental Satellite, Data,

and Information Service, 1985). Typical phenomena associated with the meso-a,

meso-_, and meso-7 scales shown in the table are as follows: meso-a scale

corresponds to the initiation of a mesoscale convective system(MCS} (NCAR, 1984);

meso-_ scale describes the the internal structure of the MCS (NCAR, 1984), for

example; and meso-yscale corresponds to small phenomena such as the low-level

wind shear (mlcrobursts).

Table 1.3 Required Observational Resolution

Characteristic PesoluUon

meso-a meso-13 meso-_,

Horizontal i00 km I0 km 0.1 km

Vertical 25 mb 10 mb 10 mb

Temporal 1 hr 10 min 1 rain

The last column in Table 1.3, meso-7, is now generally referred to as

microscale. It follows from Table 1.2 that satellite-based remote sensing platforms

would be most helpful in meeting the temporal and spatial resolution requirements
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at the global and synoptic scaleand the meso-ctscale. For meso-_and meso-7
phenomena,ground-basedsystemssuch as the Dopplerradar wind profilers [11]
wouldbemoreuseful. However,in somesituations,geosynchronous-sateUitecloud
windscouldbeusefulfor meso-_events[15].

1.1.4 THE LAWS FROM EOS

Since the lidar systems are the most promising remote sensing instruments

for global wind measurement in cloud-free areas, a spacebome Doppler laser

atmospheric wind sounder (LAWS) is under development as part of NASA's Earth

Observing System (EOS) study [9]. This system is planned for a late-90s launch into

low-Earth orbit on an EOS platform. It should make a strong scientific

contribution to our understanding of the Earth as an integrated system.

The LAWS will measure the Doppler shift of line-of-slght components from

aerosol backscattering in the atmosphere with a conically scanned optical

arrangement. Successive measurements from different directions will provide

global coverage of wind-vector profiles throughout the troposphere, on a spatial

scale of 100 km by 100 km at 1 km height intervals, and with an expected accuracy

better than 1 ms" 1 Precise management and scheduling of laser pulses should

allow for more detailed examination of fine-scale meteorological features [23].

A set of instrument parameters for the lidar system was selected for a Space

Shuttle orbit of 300 km and a near-polar orbit of 800 km (Huffaker, 1978, 1980). The

parameters selected for use in the computer simulation are shown in the following

table.
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Table1.4 Baseparametersfor a lidarwind sounder

Altitude

Targetvolume

(patch)

Nadir angle

Conicalscanperiod

Wavelength

Telescopediameter

Pulseduration

Optical-detector
efficiency

rms Long-term

pointing error
rms Short-term

pointing error
LocalOscillator

S_aceShuttle Orbit

300km

300×300x 20km

Near-PQlarOrbit

830 km

300 x 300 x 20km

62°( 600 km reach)

7s

52°(1200 km reach)

19s

9.11_n(CO 2)

1.25 m

6.7 i_s

10%

50 _rad

2 p.rad

5O kHz

1.1.5 EFFECT ON LIDARS BY CLOUDS

A large portion of the globe is normally covered by clouds {about 40%), a

major obstacle for the operation of LAWS. The cloud distribution is usually divided

into three layers by meteorologists, (except the vertical clouds: Cumulonimbus or

Cumulus). The low cloud layer covers the range from the Earth's surface to 2 km.

These clouds include stratus, stratocumulus, and nimbostratus. The middle layer

clouds are in the 2 km to 8 km range. These clouds include altostratus and

altocumulus. The top layer clouds are in the 8 km to 20 km range. These clouds are

called cirrus, cirrostratus and cirrocumulus. These clouds are generally opaque to

lidar pulses, except for very thin clouds like cirrus.
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The researchdone by Huffaker indicates that 77% of lidar pulses can

penetrate the upper layer, or down to 8 km [17]. Of those that reach this level, 73%

will penetrate the middle layer. Thus, only 57% of the transmitted pulses are

expected to reach down to the 2 km altitude."Using global cloud statistics, the lidar

system is not expected to be seriously affected provided that the laser prf is

sufficiently high. Tropical storms and the warm sector in typical cyclonic storms

will seriously affect lidar's performance."

1.2 THE DOPPLER RADAR WIND SOUNDER (RAWS)

The potential for Doppler radar use for global wind measurement

acquisition was considered poor because of the large antenna aperture and power

requirements. However, ff the Doppler radar is restricted to measuring the wind

field inside a cloud system, it can provide valuable complementary information for

the lidar system. In addition, such a system can also provide measurements for

rainfall rate and ocean surface winds.

A radar wind sounder (RAWS) is proposed as a multipurpose instrument with

a scanning pattern similar to LAWS that could measure the winds in the cloudy

areas [24]. This radar would serve as a complement to the LAWS, which must work

in clear air or where clouds are thin. Frequencies in X band or Ku band are

appropriate where precipitation is present, but clouds require higher frequencies

because cloud drops are very small. More power is needed for clouds than for rain

alone, but this will be available in future unmanned spacecraft with robust power

sources.

1.3 DISSERTATION OUTLINE

As an initial step in the study of RAWS, this dissertation is intended to

investigate several key problems in implementing a Doppler radar wind sounder.

Several key problems addressed in this study are listed as follows:
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• Radarbackscattercross sectionfor water clouds and ice clouds. This

involves modeling of cloud drop-size distributions and water content, and

computer simulation of backscattering coefficients from different types

of clouds.

• Conceptual design of the system and an analysis of error bound

* system parameters

* tracking of satellite speed

° simulation of signal to noise ratios

• Algorithms for accurately estimating the moments of the frequency

spectrum of radar echoes.

° Algorithms to resolve the frequency ambiguity and range ambiguity

problems.

In Chapter 2, we review, as background, the theory of radar scattering from

particles and clouds, as well as drop-size distributions of water droplets in clouds.

Computer simulations for a conceptual system are performed to calculate the signal

to noise ratios for different types of clouds.

In Chapter 3, we discuss the basic system parameters of a proposed RAWS, as

well as problems of antenna scan and compensation of the Doppler shift caused by

satellite motion. In addition, we carry out the analysis of error bounds for

estimating the wind field for specific situations.

In Chapter 4, various algorithms for estimating the first moment of the

Doppler spectrum are discussed. Computer simulations are used to evaluate the

performance of these algorithms.

In Chapter 5, radar ambiguity functions are used in analysis of algorithms

for removal of frequency and range ambiguities. An algorithm using different

waveform modulations to transmitted pulses is develped to solve the radar

ambiguity problems of Doppler radars. Again, computer simulations are used in

this chapter to compare the performance of the algorithms discussed.
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Chapter 2

Radar Backscatter and Attenuation From
Clouds

2.1 SCATTERING FROM CLOUDS

In this chapter, we review some of the concepts of radar backscattering from

particles, as well as some of the models of drop-slze distributions of clouds. We use

computer simulations to estimate signal-to-noise ratios (SNRs) of radar echoes

scattered from some cloud models. The radar system used in the computer

simulation is a spaceborne Doppler radar wind sounder that is discussed in more

detail in Chapter 3. Three types of cloud models were selected in the computer

simulations, according to their mean drop sizes and water contents. The results of

the simulations are presented as functions of signal-to-noise ratio of radar echo,

cloud type, and penetration into the clouds.

2.1.1 DEFINITIONS OF RADAR CROSS SECTIONS

Assume Si is the power density (W m -2) of an electromagnetic wave incident

upon a suspended material particle of geometrical cross sectional area A = _r 2. A

fraction of the incident power is absorbed by the particle, and an additional

fraction is scattered by the particle in all directions. The ratio of absorbed power Pa

to incident power density Si is known as the absorption cross section

Pa

Qa =_ii m2 (2.1)

Furthermore, the absorption efficiency is defined as the ratio of the absorption

cross section to the physical cross section of the particle:

_a = Q____a (2.2)
_r 2
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In addition to absorption,a portionof the incidentpoweris scatteredby the
particle.Thescatteringcross-sectionof theparticle,Qs.is definedasthe ratioofthe
scatteredpowerPsandtheincidentpowerdensitySi

I_$

Qs = _- m2 (2.3)

and accordingly the scattering efficiency is defined

(2.4)

Both absorption and scattering reduce the incident power density. The

extinction cross-section Qe, denoting the total power removed by the particle, is

defined as the sum of the absorption cross-section and the scattering cross section:

Qe=Qa + Qs m2 (2.5)

The extinction efficiency _e is defined as

_e = _ct+ _s (2.6)

To calculate the power of the radar echoes, knowledge of the backscatter cross-

section is required. If the back-scattered power density is denoted as Sb, the radar

backscatter cross-section Ob is defined such that the product of o_ and the incident

power density Si is equal to the total power radiated by an equivalent isotopic

radiator with power density equal to Sb. Therefore, at a distance R from the

scatterer, the backscatter power density Sb is given as [25]:

Sb= Si o"o4_R2 (2.7)
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Fromequation(2.7),thebackscattercross-sectionof thescatteerris equalto

crb= 4_R 2Sb m2 (2.8)
S i

2.1.2 SCATTER FROM A SINGLE SPHERICAL PARTICLE

Radar cross-sections for objects of almost any shape are difficult to

calculate. However, the solution for the scattering and absorption of

electromagnetic waves by a dielectric sphere of arbitrary radius r was derived by

Mie [26]. The results for the scattering coefficients and absorption coefficients were

presented in the form of a converging series:

+oo

_s(n,Z)--_22E(2k+l)( I ak 12+ I bk 12) (2.9)
X k= 0

and

2 +_0

_e(n, X)=-_ E (2k + 1) Re(ak+ bk) (2.10)
X k=0

where % and n are defined as follows

2_r 2rcr

%=kb r =-%_ =-_0

and

with

1/2

% - _,_cb)
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k b = the wave number in the background medium

erb = the real part of the relative dielectric constant of the background

medium

_-b = the wave length in the background medium

_0 = the free space wave length

np = the complex index of refraction of the particle

n b = the complex index of refraction of the background medium

_cp = the complex dielectric constant of particle

ecb = the complex dielectric constant of background medium

The terms ak and bk, known as the Mie coefficients, are functions of n and %, and

given by Stratton[27]. Battan[28], and many others. When the background medium

is air, then Erb = 1 and _-b = %0.

2.1.3 RAYLEIGH APPROXIMATION

When the radius of the particles is considerably smaller than the wavelength

of the incident wave, specifically when [ np% ] <<1. the Mie expressions for _s and _e

can be expressed by the Rayleigh approximations (in which only the first and

second terms of the Mie solutions are considered] [28]:

_s = (8/3) %4 IK 12 (2.11)

and

_e = 4X Im(-K) + 8/3 %4 I K 12 + .... (2.12)

where

_C " 1

K n 2- 1 _'c +2= n2 +---_"
(2.13)
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n is the complex index of refraction of the droplet to the background medium, and ec

the complex dielectric constant of the droplet relative to the background medium.

From (2.12) and (2.13), the absorption efficiency _a can be written as

_a = _e - _s = 4Z Im(-K) (2.14)

The corresponding scattering and absorption cross-sections for a single

spherical particle are

2_'2 6 [2
Qs=-_-Z [K m2 (2.15)

_2 3
Qa= --_- Z Im(-K) m 2 (2.16)

The backscatter efficiency _b in the Rayleigh region is [25] :

_b=4X 4 [K [2 (2.17)

Therefore, in the Rayleigh region, the backscattering cross-section of an individual

spherical particle of radius r is equal to

64/_5 r6 IK 12 m2 (2.18)
Cb = _r2 _b- k4

The Rayleigh approximations of scattering, absorption, and backscattering

coefficients are useful in calculating signal-to-noise ratios for radar echoes. The

only values we need to know are [ K [2 and Im(-K). For water droplets, values of

[K [2 and Im (-K) are known for various temperatures and wavelengths: [K [2 is

approximately equal to 0.9 for frequencies from 3 GHz to 30 GHz, and temperatures

from 0°C to 20°C, while Im(-K) increases with frequency [25]. Some of the values of

]K [2 and Im(-K) for different frequencies and temperature are listed in Table 2. I

(Table 4. I, Battan[28]).
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The Rayleigh approximation is not always applicable, especially when the

diameter of the particle is large compared with the wavelength; however, it has been

shown that the Rayleigh approximation is valid when Inpxl < 0.5. Since, the

absolute value of refractive index of a water droplet, I nw I decreases with increasing

frequency from 1 GHz to 300 GHz [25], the Rayleigh condition I nw_l <0.5 can be

satisfied for increasingly larger values of _ as frequency increases. The Mie

extinction and scattering efficiencies, _e and _s, are shown in Figures 2.1 a, b and c

as functions of drop radius r [29]. The three figures, corresponding to 3, 30, and 300

GHz, also include dashed lines which represent the Rayleigh extinction efficiencies.

Table 2.1 l K [ 2 and Im(-K) for Clouds (Table 4. I, Battan [28]}

Quality Temperature

°C

Frequency {GHz)

10 24.1 35.5

[KI 2 20 0.9270 0.9193 0.9100

i0 0.9282 0.9152 0.9045

0 0.9300 0.9055 0.9000

-8 0.8902

Im(-K) 20 0.0188 0.0471 0.06745

10 0.0247 0.0615 0.08565

0 0.0335 0.0807 0.10970

-8 0.1036

The heavy horlzontal lines in Figure 2.1 indicate the ranges of drop radii

characteristic of two types of water clouds and a rain cloud with a rain rate of 25.4

mm hr" 1. At 3 GHz, the Rayleigh approximation is certainly applicable for the

water clouds and is approximately valid for the rain cloud, while at 30 GHz, the

approximation is valid only for the water clouds. At 300 GHz, the approximation is

valid only for the falr-weather cloud.
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Ice clouds may contain particles with radii up to about 0.2 mm, but the

refractive index of ice is smaller than that of water. The combination of these two

factors leads to the conclusion that, for an ice cloud, the Rayleigh criterion is

applicable up to about 70 GHz for computing _, and up to 200 GHz for computing _b

[25].

2.1.4 VOLUME SCATTER

In a resolution volume in clouds, the scatterers (water droplets or ice

particles) are assumed to be randomly distributed within the volume such that there

are no coherent phase relationships between the fields scattered by the individual

particles. Additionally, the concentration of particles is usually small enough to

support the assumption that the shadowing of one particle by another may be

ignored. These two assumptions lead to the conclusion that the total scatter cross-

section of a given volume is equal to the algebraic sum of the scatter cross-sectlons
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of all of the individual particlescontainedwithin that volume. Similar statements

maybemaderegardingthe absorptionandbackscatteringcrosssections.

2.1.4.1 VOLUME SCATTERING COEFFICIENT

The volume scattering coefficient _:s represents the total scattering cross-

section per unit volume, and has units of Np m-3 x m2=Np m-1 The volume-

scattering coefficient k s is given by

r
max

Ks= fp(r) Qs(r) dr Np m -I (2.19)

rmin

where p(r) represents the number of water droplets per-unit volume per increment of

r, Qs is the scattering cross section for a droplet with radius r. In the Rayleigh

region, equation (2.19) can be expressed in a summation form

N

2_5Ks =-_ IK 12 D_

i=1

Np m -1 (2.20)

where N is the total concentration of the droplets in a unit volume of the cloud and

Di is the diameter of ith droplet In the unit volume.

2.1.4.2 VOLUME ABSORPTION COEFFICIENT

Similar to the volume scattering coefficient, the volume absorption

coefficient is defined as

r
max

_:a= fp(r) Qa(r) dr Np m"1

rmin

(2.21)

In the Rayleigh region, the absorption coefficient can be expressed as
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N

1¢a = _ Im(-K) D 3i

i=1

Np m-1 (2.22)

Using the following relationship

N

m =106x_- _ 3v o ,Di

i=I

g m"3

where m v represents the water content in a cubic meter volume in clouds (the

fractional volume occupied by the particles multiplied by the density of water( = 106

gm-3), the volume absorption coefficient can be written as:

1¢a=6_/_. Im(-K) mv 10-6 Np m -1 (2.23)

2.1.4.3 VOLUME EXTINCTION COEFFICIENT

For water and ice drops in clouds, the absorption cross-section Qa is much

larger than the scattering cross-section Qs in the Rayleigh region since Qa is

proportional to r3 while Qs is proportional to r6. This fact can be observed from

Figure 2.1. The cloud volume extinction coefficient _:e as the sum of Ks and ca is

therefore approximately equal to the volume absorption coefficient _¢a, and can be

calculated with equations (2.22) and (2.231.

2.1.4.4 VOLUME BACKSCATTERING COEFFICIENT

Similar to the definitions of scattering cross-section and absorption cross-

section, the volume backscattering cross-section is defined as a summation of

backscattering cross sections of individual drops in a unit volume
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N

_5
-- ]K 12 __D 6

(_vc i

i=1

m-1

= 10-18 It5
_,--_-]KI2Z m -1

(2.24)

where Z is the reflectivity factor (a quantity widely used in the meteorology

community] in units of mm 6 m -3.

Backscatter from turbulent fluctuations in the refractive index of the

medium adds to the echo power. However, since the contribution of this type of

backscatter is quite small when compared to the droplet backscatter, it can be

neglected. In addition to the attenuation caused by water droplets in clouds, radio

waves also suffer attenuation caused by absorption of atmospheric gases. This

attenuation is mainly caused by the existence of absorption lines of oxygen and

water vapor in the atmosphere. Oxygen has an isolated absorption line at 118.74

GHz and a series of close lines between 50 and 70 GHz which act as a continuous

absorption band. Water vapor has three absorption lines at frequencies of 22.3 GHz,

183.3 GHz, and 323.8 GHz. As a result, the atmosphere contains a number of

"windows" where the attenuation of radio waves by atmospheric gases is small. The

total attenuations caused by absorption of gases as a function of incident angle

between 20 MHz and 50 GHz are shown in Figure 2.2 [30].
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Figure 2.2. Total attenuation of radio waves by atmospheric gases
versus frequency for various elevation angles (from [30]}.

2.1.5 RADAR EQUATION

The weather radar equation can be stated as follows [3 I]

c Pt z 12 G2 0 CLtLrr-_l T!Pr 1024_ 2 In2

where

-2 (leg+lOp+it c) dh
0

(2.25)

c = the speed of light

Pr = the received signal power

Pt = the transmitted peak power

= the expanded pulse width if the chirp technique is applied
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X = the wavelength

G = the antenna gain

e = the horizontal beamwidth

= the vertical beam width

Lt = the transmitter loss

Lr = the receiver loss including filters

r = the distance from the radar to the target

_g = the extinction coefficient due to gas

kp = the extincUon coefficient due to rain or snow

_c = the extinction coefficient due to clouds

(in the Rayleigh region, it is equal to Ks, the scatter coefficient)

h = the depth of the radar signal penetration into the cloud

Tl = the volume scatter coefficient

The total attenuation caused by the atmospheric gases is dependent upon the

pointing angle of the antenna and the operating frequency. At a pointing angle of 30

- 35 degrees and frequency of 35 GHz, the total loss is less than 0.5 dB, as shown in

Figure 2.2. _p and rc are dependent upon cloud type and can be calculated using

equation (2.22) or (2.23).

2.2 MODELS OF DROP-SIZE DISTRIBUTION IN CLOUDS

2.2.1 CONTENTS OF CLOUDS

Cloud droplets are usually formed by water vapor condensing on particulate

which serve as Condensation nuclei. Supersaturation (humidity of >100%) is

required to condense water vapor in pure air. For a visible cloud, the droplet's

diameter is > 5 micrometers. The concentration of water droplets in clouds is on the

order of 100 per cubic centimeter and typical radii are about 10 I_m. This structure is

extremely stable as a rule, and the droplets show little tendency to come together or

to change their sizes except by general growth of the whole population [32]. In

addition to mean radius of droplets, total concentration and water content

per-cubic meter are other important parameters used to classify cloud.s In
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non-precipitatlngcumulus,a typicalvaluefor watercontentis 0.59gm-3,with peak
values of about lg m-3. In stratus clouds, the values tend to be smaller. In

cumulonimbusclouds,thewatercontentscanexceed5 gm-3.

In addition to water droplets,clouds often contain ice particles when the
temperature is low. However, observations show that the 0°C level in the

atmospheredoesnot inducea sharp discontinuityin the microstructureof clouds

and precipitation. Clouds have a high probability of containing no ice if the

temperature of the cloud is warmer than -10°C. However, with decreasing
temperaturethelikelihoodof iceincreases:below-20°C,morethan90 percentof the
cloudscontainiceparticles[33].

2.2.2 DROPLET SIZE DISTRIBUTION OF WATER CLOUD

Many cloud physicists have published results of measurements of drop-size

distributions or liquid-water contents, or both, in various types of cloud and fog.

Some of these results are shown in Figures 2.3, 2.4, and 2.5. These examples show

that most drop-size distributions measured in many different types of cloud under a

variety of meteorological conditions exhibit a characteristic shape. Generally. the

concentration rises sharply from a low value to a maximum, and then decreases

gently toward larger sizes; thus. the distribution becomes positively skewed with a

long taft toward the larger sizes. Such a characteristic can be approximated

reasonably well by some analytical formulas [34-35]:
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Figure 2.3. Measured drop-diameter histograms for different kinds of clouds.
Note the change in ordinate scale from part to part. Note significant numbers
of large drops in all but (d). (a) Orographic cloud, Hawaii, p = 0.4 gin-3. (I)) Dark
stratus over Hflo, HI, p = 0.34 gm-3. (c) Tradewind cumulus over Pacific near
Hawaii, 615 m above base, p = 0.5 gm-3. (d) Continental cumulus over Blue
Mountains near Sydney, Australia, 615 m above base, p = 0.35 gm-3 (From [35])
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Figure 2.4. Average cloud-drop spectra reported by aufm Kampe and
Weickmann for different cloud types. Note the large number of large drops

present in the cumulus congestus and cumulonimbus clouds (from [35]).
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.LOG NORMAL DTSTR/BUTTON

1 f ]n2(a/am)_,

"(a)-o xPl' J "J
(2.26)

where a is drop radius, am is the median drop radius and _ is the root mean square

{RMS} deviation of the logarithm of the drop radius.

MODIFIED GAMMA DISTR_BUTION

n(a) = A a_ e "BaT (2.27)

where A, B, _. -fare positive parameters. The maximum of this distribution occurs

at am, an observable quantity which relates the parameters of the distribution to
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A constraintis imposedonequation(2.27)in termsof the total concentrationN.

AB-(]3+ 1)/7
N - F((]3 + 1)/7) (2.28)

?

KHRIGLan_ AND MAZIN DISTRIBUTION

The Khrigian-Mazin drop-size distribution is a special case of the modified

Gamma distribution [34], which can be expressed as

n(a) = A a 2 e ('B a) (2.29)

The parameters A and B can be related to the first and second moments of the

distribution:

rmax
2A

N= Sn(a) da B3 (2.30)
rmin

and

rlTlaX

<a>=l/N [an(a) da=3/B
rmin

(2.31)

where <a> is the mean radius of drop size. Another related quantity of interest is

the water content, WL. For the Khrigian-Mazin distribution,

A= 1.45x1018 WL
p <a> 6

(2.32)

N= 1.07 x 105 WL
P <a>3 Number of Drops (2.33)
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W L = 0.934579 x 10 -5 x N p <a> 3 g m -3 (2.34)

where <a> is in _-n, p is in g cm -3. WL is in gm-3 and N is in number of drops per cm 3.

The Khrigian-Mazin distribution is very convenient to be used in computer

simulation of cloud drop size distributions and calculation of water contents of

clouds while the modified Gamma distribution may give overflow problems in

simulating drop-size distributions or some types of cloud. The log-normal

distribution does not have the simple relationships between the total concentration

of droplets, the water contents, and the mean radius like the other distributions.

However. all of the analytical expressions given represent only average

distributions. Individual drop-size spectra may be significantly different. Figure

2.6 shows computer simulated Khrigian-Mazin Drop size distributions for three

different types of clouds. These three models of clouds are classified as thin,

medium, and heavy according to their water contents per-unit volume.
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Figure 2.6. Computer simulated drop-size-distributions of three different

types of clouds 0.3, 0.5, and 1.0 gm "3 (thin, medium and heavy].
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In general, when the drop size increases, the concentration of droplets

decreases. The following parameters may be helpful in cloud modeling [32]:

Table 2.2. Some TTpical Parameters for Clouds

Droplet Type Mean Radius Concentration of Falling Velocity

{lJm} Droplets {per Liter) cm s "1

Typical Cloud Drop 10 106 1

Large Cloud Drop 50 103 27

TTpical Rain Drop 1000 i 650

2.2.3 ICE CLOUD MODELING

The drop size distributions of ice crystals in clouds are not as well known as

those for water droplets. With the average size of the ice crystals under many

conditions being considerably large and their shapes irregular and usually far from

spherical, it is difficult to model an ice cloud. Ice crystals in ice clouds can attain

sizes an order of magnitude larger than water droplets found in water clouds. Hence,

the reflectivity factor Zi of an ice cloud may be several orders of magnitude larger

than that of a water cloud with the same liquid water content inv.
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Figure 2.7. Average ice crystal spectra in a) Ci Spi, b} AS, c) and d) Ci
unc, e) Cs, i} Ac and g) Cb cap. The size class is 200 I_(From [36]}.
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Thewatercontentof a cloudis typicallylessthan 1gm-3and rarelyexceeds
4 gm-3. Thefactor IKw12for watervariesbetween0.89 and 0.93overthe 0-20 °C

temperaturerangeand 1-10cm wavelengthrange. For ice, IKi 12 is about 0.2,
which is 4.5 times smaller than IKw12,but becauseof the much larger Zi ( in

comparisonto Zw),icecloudsaremuchmorereadilydetectableby radar thanwater
clouds.

Figure2.7 showssomeaveragedicecrystal spectrain different cloudtypes
measuredby Heymsfieldand KnowUenberg[36].For cirrus clouds,Heymsfieldand

KnoIlenbergmeasuredthefollowingaveragecharacteristics:
• icecrystal concentration 1.0 ×104 to 2.5 × 104 m "3

• mean crystal length 6.0 xl0 "2 to 1.0 xl0 "1 cm

• ice-water content 0.15 - 0.25 gm -3

• radar reflectivity factor 5.0 - 20.0 mm 6 m "3

• precipitation rate 0.5 - 0.7 mm hr" 1

2.3 COMPUTER SIMULATIONS AND CONCLUSIONS

Most of the early experiments used 10 cm to 3 cm radars that could only

detect drops larger than a few hundred microns in diameter. More recent high-

power 3-cm radars, and most 1-cm radars, permit the detection of drops with

diameters larger than a few tens of microns. A majority of this work has shown

that the appearance of the radar echo is characteristically related to the cloud

dimensions and temperatures [37-38]. There is a correlation between the number of

echoes and the cloud dimension and top temperature. Larger clouds produced more

radar echoes. Similarly, Iouds with colder cloud top temperatures also produced

more radar echoes. The explanation for this phenomena is that the large clouds

tend to have a broader spectra of drop sizes and greater Z factors with the same

mean drop size and water content. Cold cloud temperatures indicate that the clouds

may contain ice particles and therefore have large reflectivity factors.
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2.3.1 COMPUTER SIMULATIONS OF SNR OF RADAR ECHOES

Three cloud types, rated as thin, medium and heavy according to their water

contents and mean drop sizes, have been selected in the computer simulations.

Their water contents and mean drop-radii are listed in Table 2.3. The basic purpose

of these computer simulations was to examine the signal to nolse raUo of radar

echoes from different cloud types as a function of cloud penetration, frequency and

reflectivity factor.

Table 2.3. Parameters In Cloud Modeling

Type of Cloud Water Content Mean Drop Radius

m -3 l_m

Thin Cloud 0.3 4.5

Medium Cloud 0.5 7.5

Heavy Cloud 1.0 11.6

A menu-driven simulator was developed, which allows the user to set up

parameters, such as frequency, antenna gain, altitude, signal-to-noise ratio, cloud

models, etc., from popup menus. The parameters for the radar system used in the

simulations are listed in Table 2.4. A detailed discussion of these parameters is

presented in Chapter 3.

Table 2.4. Parameters Used in Computer Simulation

Parameter 35 GHz 10 GHz

Antenna Gain 68 dB 57 dB

Beamwidth 0.00122 rad 0.00427 rad

Peak Power 3000 W 3000 W

Pulse Length (chirped) 1 lls 1 l_S

Chirp Gain 20 20

Pointing Angle 30 deg 30 deg

Transmitter Loss 1.5 dB 1.5 dB

Receiver Loss 1.5 dB 1.5 dB

Noise Figure 4 dB 4 dB

Im(-K) 0.08565 0.0247

K 2 0.9 0.9
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SIGNAL-TO-NOISE RATIO VERSUS CLOUD DEPTHS AND CLOUD TYPES

Using the parameters given in Table 2.4, computer simulations of signal-to-

noise ratio (SNR} versus cloud depth were performed for different types of clouds,

frequencies, and altitudes of orbits. The mean radius of droplets, drop

concentration, and water contents of a cloud are not independent. An example of

the correlation between these values Ishown in Figure 2.8 [35]. From this figure, an

experimental formula was derived that relates the mean drop size and the water

content in a cloud.

r = 11.6 + 13.5 * log(W) (2.39)

where r is mean radius, and W is water content. This equation is only used for the

purpose of computer simulations of cloud drop-size distribution in this chapter.

The actual clouds may have a much different relationship than (2.39).

(o)

......

(b] (c)

Figure 2.8. Spatial distribution of microstructure parameters in
cumulus cloud. (a} drop diameter (tim], (b) drop concentration

[number cm-3), {c) W L (gin -3] [from [35]).

The results presented in Figures 2.9 to 2. I i show that, for water clouds, the

return signal from cloud tops at 35-GI-Iz is much larger than at 10-GHz. This is due

to the fact that the 35 GHz system has a higher antenna gain and larger backscatter

coefficients than the 10 GHz system does.
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Figure2.9showsthe signal-to-noiseratio for the _thin"cloudtype(like fair-
weathercumulus). In this condition,the radar echois weakevenat 35 GHz:5 dB
SNRat a300-kinorbit,andbelowzero dB at a 800 km orbit. For the 10-GHz system,

the signal is too weak to be useful in measurement of wind vectors from clouds.

Figure 2.10 shows the signal-to-noise ratios from a medium cloud, with water

content 0.5 gm-3.; the signal-to-noise ratios increase substantially (about 10 dB) as

the water content increases from 0.3 gm "3 to 0.5 gm -0"3. In this case, at both the 300-

km and the 830-km orbits, the 35-GHz system is able to provide high enough SNRs

for measuring Doppler frequencies. As for 0.3 gm "3, the 10-GHz system cannot

provide high enough SNR. Figure 2.11 shows the signal return from a heavy cloud

with water content 1.0 gm "3. The SNR's at both frequencies are further increased;

even at 10 GHz the SNR is above 0 dB for the 300-km orbit.

From these results, it can be concluded that a frequency of 35 GHz or higher

is required for measuring moments of Doppler spectra of radar echoes from a

majority of water clouds, as well as ice clouds. Although the 10-GHz system shows

greater penetrations than the 35-GHz system, especially in the heavy cloud (1.0

gm-3), it is limited for wind measurement in clouds from space because of low SNR

and wide antenna beamwidth (as we will see in Chapter 3). A frequency around 10

GHz can be used for measuring wind in rain. The rain may cause too much

attenuation for 35 GHz or higher. In addition, the 10-GHz radar can also determine

ocean surface wind fields.
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Finally, Figure 2.12 shows the simulated signal-to-noise ratio (SNR) versus

increments of the Z factor. Because the ice cloud is difficult to model, we can derive

some qualitative idea from Figure 2.12 about the signal to noise ratio from ice

clouds. For example, although the ] K i I is about 0.2, 4.5 times smaller than

I Kw I , Z for cirrus (ice) clouds at 35 GHz is 5 to 20 mm 6 m -3, and the signal-to-

noise ratio is above 20 dB based on Figure 2.12.

2.3.2 CONCLUSION AND FUTURE WORK

The results presented in this chapter demonstrate that, from a SNR point of

view, the 35 GHz Doppler radar can provide high enough SNR's of radar echoes from

clouds for measuring mean Doppler frequency. Although the computer simulations

were based on water cloud models, the results may also be applicable to ice clouds as

discussed in the previous section. However, many other factors were not considered

in the computer simulations and therefore not discussed in this chapter. For

example, we did not consider the cases that the cloud dimensions are smaller than

the antenna beamwidth, or the thickness of clouds are narrower than the vertical
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resolution of the radar. In these cases, the signal-to-noise ratios of radar echoes

would be smaller than those simulated in this chapter. Moreover, some of the cloud

models used in the computer simulations may be impractical. These questions need

to be addressed in future studies.
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Chapter 3

Conceptual
Performance

Design and Analysis of

3.1 INTRODUCTION

A large volume of published literature concerns operations of Doppler

radars for measuring wind speed, weather forecasting, detecting turbulence, etc.

However, there was not conclusive evidence that Doppler radars were able to

measure the wind fields in clouds from space. One major obstacle was that the

radars lacked the power to overcome the weak backscatter from clouds. Although

recently there has been research in the area of using VHF and UHF Doppler radars to

measure wind speeds [39-42], these VHF and UHF systems could not be used in

spacebome applications because of the excessive size of the antenna and power

requirements. To meet the requirements for vertical resolution and peak power, a

spaceborne Doppler radar for wind measurement should use a high frequency, as

discussed in Chapter 2.

The Radar Wind Sensor (RAWS) is a proposed space-borne Doppler radar to

be used as a multi-purpose instrument for measuring global wind fields in cloud-

covered areas as well as rainfall and surface winds on the oceans. The basic

configuration, as shown in Figure 3.1, has two antenna beams at two fixed elevation

angles _1 and _2, and the antenna scan patterns are conical. The transmitted pulses

are frequency modulated with compressed pulse widths of about 1 ]is. Each antenna

beam transmits signals at two different frequencies: one frequency is at about 10

GHz (X band), and the other is approximately at 35 GHz (Ka band). The frequencies

used on the two antenna beams may need to be slightly different to avoid

interference between received signals. To concentrate on the topic of wind

measurement from non-precipitating clouds, we will primarily discuss the system

configuration and performance for 35 GHz. The 10-GHz system will be covered by

others since it is primarily useful for measurements of wind in precipitation

systems, ocean-surface wind, or rainfall rate. For the lower elevations in rain. a f
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requency like 10 GHz is required because of the high attenuation of the 35-GHz

signal traveling through rain.
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With circular scanning patterns, areas of hydrometeor activity can be

fllumlnated multiple times by the antenna beams when the satellite traverses over

these areas. Since wind vectors are three dimensional, one needs at least three

measurements of the Doppler shifts from different angles to retrieve a wind vector.

In clear air or light clouds, it is often assumed that the vertical components of wind

vectors are uncorrelated with the horizontal components, and that the amplitudes

of vertical components of wind vectors are very small in comparison to the

horizontal components. Under such assumptions, the vertical components of wind

fields can be estimated separately from the horizontal components, or even ignored

in calculation of the horizontal components of wind vectors. Therefore, it is

possible, by measuring the Doppler frequencies of water droplets in these regions

from two different angles, that the horizontal wind vectors in the resolution volume

can be retrieved. However, in heavy cloud regions and precipitation systems, the

vertical wind vectors may not be ignored. In such cases, measurements with three

linearly independent pointing angles are necessary to retrieve the wind vectors.

An assumption concerning the wind field was mentioned in Chapter one: the

RAWS is used to measure the global and meso-a scale phenomena of the

atmosphere. Thus, the measurements made within a 100 km by 100 km area can be

averaged to achieve a more reliable measurement of the wind vector in this area.

In Chapter 2, we addressed the radar backscatter from different types of

clouds. In this chapter, we will discuss the system parameters of RAWS and conduct

an error analysis of the system performance. In addition, we will also discuss

strategies of antenna scan patterns, and a method for compensating Doppler shifts

caused by satellite motion.

3.2 BASIC CONFIGURATION OF THE SYSTEM

The basic parameters of a conceptual system for the radar wind sounder are

listed in Table 3.1. Tradeoffs encountered in selecting the parameters such as

antenna elevation pointing angle, scan period, and scan modes are discussed in

detail below. Two orbit heights were selected for the conceptual design of the radar

wind sounder. One is at 300 km for space-shuttle orbit, and the other is at 830 km

for near-polar orbit. These orbit selections were referred to in [9]. In addition, some
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major obstacles,such as clutter rejection and limit on vertical resolution,
identified in the followingdiscussion.

Table3.1BasicParametersfor theRadarWind Sounder
PARAMETER 10GHz 35GHz

are

Altitude of Satellite

TargetVolumeUsedin Output
(frommany individual measurements]
Nadir Angle

PRF

PulseWidth (Compressed)

Time-BandwidthProduct

Antenna Size (Parabolic)

AntennaGain

Horizontal Beamwidth

Vertical Beamwidth

ScanPeriod

Vertical Resolution

Footprintat 30° (300 km)

Footprint at 30 ° (830 km)

Doppler Bandwidth due to
Satellite Motion

Peak Power

Average Power

Receiver Noise Figure

Transmitter Loss

Receiver Loss

Spacecraft Velocity

300 krn or 830 km

100 krn x 100km x 20 km

30 ° and 35 °

3500 Hz

1Hs

20

8m

57 dB

0.00427 rad

0.00427 tad

10s

2km

1.5 x 1.7 km

2x5.1km

1900 Hz

3000W

210W

4dB

1.5 dB

1.5dB

7.5 kms "1

68dB

0.00122 rad

0.00122 lad

10s

lkm

0.5x0.4 km

1.5 x 1.2 km
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3.2.1 SYSTEM PARAMETERS

OPERATING FREQUENCY

The operating frequencies of RAWS were chosen to be at 10 GHz and 35.5 GHz.

However, from the computer simulation study in Chapter 2, we concluded that

operating frequencies around 10 GHz may be more appropriate for measuring winds

in precipitation, surface winds over the ocean, and rainfall rate. To measure winds

from clouds, frequencies around 35 GHz or higher are needed with current

technology. By observing the transmission windows in the microwave region

presented in Figure 3.2, for frequencies above 20 GHz, windows at frequencies 35.5

.GHz, 90 GHz, or 135 GHz are all applicable for measuring wind fields in clouds.

Higher frequencies can increase the SNR of radar echoes from thin clouds and

reduce the antenna size, but they also endure more extinction, and may not be able

to penetrate deep enough through heavy clouds. In this dissertation we will only

discuss the case of 35 GHz. The feasibility of using higher frequencies to measure

wlnd fields from space may need further investigation.

ANTENNA GAIN, SIZE, AND BEAM WIDTH

To provide the high gain level and narrow vertical beamwidth required for

good vertical resolution, a large antenna is desired. With the technology currently

available, the size of an antenna can be made as large as 1000 wavelengths. We

chose to use an 8 m diameter parabolic antenna in this conceptual design. It is

possible to use this antenna for both 35 GHz and 10 GHz frequencies. For a

uniformly illuminated parabolic antenna, the gains of the antenna for both of these

frequencies can be calculated with the following formula:

GO= DO eap et

2

=(-_) eapCt (3.1)

where GO is the maximum value of gain, DO is the directivity, d is the diameter of the

dish of the reflector, eap is the aperture efficiency of the parabolic antenna, and et is
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the antennaefficiency. Typicalvaluesfor theseparameters are eap= 60% - 80%

and_t=95% [43]. If we choose eap=70%, ct =95%. and substitute these values in to

{3.1), it follows the antenna g_ of G=68 dB at f=35.5 GHz and G = 57 dB at f=10 GHz.

2O

10

V)ot,rVapor.  orpt;o.

135 GHz
W;nclc:,w

90 GHz
Window

0
1 20 40 60 80 IO0 120 140 160 180 200 220 240 260 280 300

Frequency (GHz)

Figure 3.2. Percentage transmission through the earth's atmosphere,
along the vertical direction, under clear sky conditions. (From F.T.
U1aby, R. I,L Moore, and A. I¢. Fung, 1981 [25])

The beam widths of the antennam can be calculated using the experimental

formula from [43]:

3OOOO
Go- (3.2)

Old 02d

where 01d and 02d are horizontal and vertical beam widths. For a

antenna, from (3.2), 01d=02d=0.07°=l.22 m rad at 35.5

01d--02d=0.244°=4.27 m rad at I0 GHz.

parabolic

GHz and
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ANTENNA POINTING ANGLE

There are tradeoffs in selecting the antenna pointing angles, the vertical

resolution and the swath width. The vertical resolution imposes a limit on the

use of large antenna pointing angles; however, a large pointing angle is desired

for achieving large swath width and reducing measurement errors for

horizontal components of wind vectors. Figure 3.3 shows the limitation on the

Figure 3.3. Tradeoff between the antenna pointing angle, antenna
beamwidths and the vertical resolution, where _ is antenna pointing
angle, re is the edge-to-edge vertical resolution, and H is the height of
the antenna.

antenna pointing angle imposed by the vertical resolution. The vertical resolution

not only depends on the pulse length, but also on the antenna pointing angle and

beamwidth. Assume that R is the slant range, _i the elevation angle of the antenna,
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the beamwidth, _the pulse length(compressed,if chirp is applied},then re(the

edge-to-edgeverticalresolution)is equalto:

C_

re = _ R sin (_i + 2" cos _i i = 1,2 (3.3)

Equation (3.3} shows that the vertical resolution is a sum of two terms. The first

term is contributed by the antenna beamwidth, and the second term is contributed

by the pulsewidth. For the assumed parameters :

R = 830 km/cos_i

re = lkm

= 1.22mrad (35GHz}

_i = 35°

the pulsewidth is limited by the following inequality:

r e - _ R sin (_i
"c< 2 (3.4)

c cos _i

From (3.4}, the pulse length _ is limited to less than 1.65 _s. Using the same

parameters as above except an orbit height cf 300 km (space-shuttle orbit), the pulse

length is limited to less than 4.08 _us. However, for f=10 GHz and _=4.27 mrad, the

vertical resolution cannot be less than 1 km in 830-km orbit and the pulse length is

limited to less than0.56 _ts (to satisfy 1 km vertical resolution in 300 km orbit}.

The primary limit to resolution is the beam width. Hence, a taller antenna (>8 m}

would allow improved vertical resolution.

Another definition of the vertical resolution is called the effective vertical

resolution. It is defined as the -6 dB 3-dimensional contour of the radar

illumination [44]. With this definition, Kozu (1989} pointed out that the effective

vertical resolution for spaceborne radar can be well approximated by [45]:

reff _, (_h tan _i )2+ (_-cos _i )2 (3.5)
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Essentially, equation (3.5) imposesthe sameconstraint on the antenna
pointing angleas doesequation(3.3). To achievea small vertical resolution, the
pointing angleof the antennaandthe beamwidth alsoneedto besmall. With orbit

heights of 300 km and 830 kin, the swathwidths are calculatedin the following
table

Table3.2 SwathWidthsfor DifferentOrbitsandAntennaPointingAngles
Orbit Height swathwidth (_= 35°) swathwidth (_=30°)
300km 420km 346 km

830km 1162km 923krn

Becauseof the limits on the antennapointingangleand the verticalresolution,the
swathwidths ofthe radarsystemaresmallerthan thoseofLAWS [9].

CLUTTER FROM ANTENNA SIDE LOBES

Clutter is generally defined as any unwanted radar echo. In the context of

this dissertation, it mainly consists of the echoes from land and sea. The clutter

from the main antenna lobe may not be a problem, since it can be separated from

the received signal by range gating. However, the clutter from the antenna sidelobes

can be a severe problem to the system. This is due to the fact that the backscatter

coefficients of sea and land clutter are much larger than the volume-scatter

coefficients of clouds [46-47]. Even when the gains of the antenna side lobes are 40

dB below the main lobe, the power of the clutter may still be higher than that of the

signal returned. To solve this problem, we make some suggestions below:

*. Using a narrow pulse width and large antenna pointing angle, so that the

energy of the clutter can be reduced as a result of reduced cross-section of

clutter.

° Designing the antenna such that sidelobes near vertical are very small.

Although a detailed study of clutter rejection is an important issue in the RAWS

study, it is beyond the scope of this dissertation.
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PRF SELECTION

With tp the pulse length, rr the range resolution, and c the speed of light, the

range resolution is rr = ctp/2. To obtain a fine range resolution, it is necessary to

have a short pulse length. On the other hand, the frequency resolution requires the

that minimum time of measurement be approximately equal to the inverse of the

bandwidth of the Doppler filter.

A typical radar pulse length is on the order of microseconds, and the target

(wind) speed is on the order of tens of meters per second. To achieve a windspeed

resolution of 1 ms "1, the required measurement-time is about 15 milliseconds at 3

cm wavelength (I0 GHz), and 4.3 milliseconds at 0.857 cm wavelength (35 GHz).

Because of the required range resolution of I km, such long pulses cannot be used m

the design of RAWS. Therefore, unlike a laser radar (lidar) system which may use a

single pulse to measure the Doppler shift, a microwave radar wind sounder must use

a train of pulses to measure the mean Doppler frequency and at the same time meet

the requirements of range and frequency resolutions.

To avoid range ambiguity for evenly spaced transmitted pulses, the pulse

repetition time (PRT] is bounded by the following inequality:

PRT > 2 Ttran s + Techo + Tguard (3.6)

where Ttrans is the pulse length of the transmitted pulse (it is expanded pulse width

when the chirp technique is applied); Techo is the round trip delay of the

electromagnetic wave propagating through a 20 km thick cloud; and Tguard is the

time required to compensate for variations of the Earth's surface. For a uniformly

spaced pulse train, with Ttran s = 20 llS, Tech o - 163 ps at 30 deg. antenna pointing

angle, and Tguard = 10gs, equation (3.6) leads to the following inequalities:

PRT>213bLS

PRF < 4700 Hz (3.7)
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Fora train ofpulse-pairtransmissionasshownin Figure3.4, anddiscussedlater in

chapter5,thePRTisboundedby

PRT> 2T2 + 2Ttrans + Techo + Tguard (3.8)

Assuming that the pulse width is 20 _s, TI=PRT, T2 = 35 _Ls, and Tguard = 10 _s, it

follows that

PRT > 283 ]_s

PRF < 3523 Hz

For a quadratic receiver, taking PRF as the sample frequency, the Nyquist

frequency is equal to half of the PRF. Thus, to measure 60 ms" 1 radial wind speeds,

the minimum PRFs required to satisfy the Nyquist criterion are equal to

4v [8000Hz at f=10 GHz
= 1-28400 Hz at f=35.5 GHz (3.9)

From (3.9), we can see that there is a very severe frequency-amblguity problem at 35

GHz; the maximum Doppler shift can be as large as 8 times the Nyquist frequency.

Later in Chapter 5, we discuss the algorithms for reducing frequency ambiguity

problems.

3.2.2 ANTENNA SCAN SCHEMES

Selection Of the antenna scan mode was one of the major problems in the

design of RAWS that we had to investigate. During the measurements of Doppler

frequencies, both the satellite and the antenna beams are in motion, and this may

cause changes in the beam position and antenna pointing angles. Such changes

may introduce errors in estimation of the mean frequency as well as decorrelation

to the returned signals. The changes in antenna pointing angle and beam position

can be reduced or minimized by choosing an optimal antenna scan mode. In this
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section, three scanning modes are examined: the first is uniform scan; the second is

discrete scan; and the third is a combination of the uniform and the discrete scans.

These three scan schemes require different levels of complexity in hardware and

also introduce various amount of errors into frequency measurements.

3.2.2.1 UNIFORM SCAN

In a uniform scanning scheme, the antenna rotates with a constant angular

speed achieved with a scanning motor or by satellite rotation. However, there is a

severe problem with this simple scanning strategy caused by satellite motion and

antenna beam rotation. This scan mode is illustrated in Fig 3.5a. For example,

assuming the PRF = 3500 Hz and that each measurement contains 256 samples, it

would take 256/3500=73.1 ms for each measurement. However, if the uniform

scanning period Ts=10 s, during one measurement interval the outer beam would

travel 9.6 km and the inner beam 7.96 km with a 300 km orbit. These vadues are

more than I0 times as large as one footprint of the antenna beams at f=35 GHz.

Such a large displacement in antenna beam can cause a serious decorrelation in the

returned signals. In addition, the antenna pointing angle changes nearly 2.6 °

during each measurement. Such a large change in antenna pointing angle is bound

to cause a large error in calculations of the wind vectors. The only way to reduce the
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changes in pointing angle and displacement in antenna beam is to lengthen the

scan period. However, because of the required horizontal resolution of measured

wind field, the density of measurements is limited to at least once per I00 km by 100

km. This imposes a limit on the scan period being less than 27 s.

3.2.2.2 DISCRETE SCAN

The second mode, shown in Fig 3.5b, is a discrete scan which assures that the

pointing angle does not change during each measurement. The only decorrelation

introduced is due to the satellite motion; the beam travels 0.54 km during a

measurement of 256 samples. However, there is no antenna pointing error during

the measurement. Strictly speaking, the discrete scheme needs to be semi-discrete,

as the motion of the antenna beam from one position to the next cannot be at a very

high speed. Otherwise, the phase lock loop (PLL) used to track the Doppler shift of

clutter caused by satenite motion may lose track of the Doppler frequency from the

clutter (see section 3.2.3). Considering the size of the antenna the discrete scan is

difficult to implement mechanically. Electronic scan for such a large antenna may

also be too costly and complicated to be achievable. However, use of a set of phased

arrays cannot be ruled out.

3.2.2.3 COMBINATION OF UNIFORM AND DISCRETE SCAN

The third scheme is to focus the beam to the center of the resolution volume

while a measurement is being made. This strategy can be implemented by a

combination of both electronic and mechanical methods. For example, the

reflector of the antenna can be controlled by a motor, and the antenna feed can be

an electronically scanned phased array. During each measurement, the feed moves

the beam back and forth to focus on the center of the resolution volume, while the

reflector rotates at a uniform speed. This scheme, shown in Fig 3.5c, can greatly

reduce the decorrelation problem which was inherent in the uniform scan-scheme.

However, the change in pointing angle, during each measurement, can introduce

estimation errors. The angle change can be calculated by the following expression:

A__ R (3.10)
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where A_ is the angle difference between the initial and final pointing angle in a

measurement of the mean frequency, Tm is the measurement time, R is the slant

range, and v is the satellite speed. Assuming that the measurement time is Tm=73

ms (256 pulses), with satellite speed v = 7500 ms" I, then the angle difference is equal

to:

2 mrad for space shuttle orbitA+
---10.6 mrad for near polar orbit

Such a small change in antenna pointing angles may not introduce any significant

error in retrieving wind vectors as we will see later in section 3.3.3.

In comparison of the three scan modes, we may conclude that the uniform

scan is not a satisfactory scheme; the discrete mode may be too costly to implement;

the combination of uniform and discrete scan is the optimal choice among the

three.

3.2.2.4 SCAN TRAJECTORY

The coordinates of the two beam trajectories in a Cartesian system can be

expressed as:

x = h x tan (_ix cos (at + vt

y = h x tan _i x sin cot i= 1,2 (3,11)

where

_i = the antenna's elevation angle

co = the angular speed of scan

v = the speed of satellite

h = the height of the satellite orbit.

Figure 3.6 presents the trajectories of the antenna beams at orbits of 300 km and

830 km.
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Figure 3.6. Antenna scan trajectories at 30 deg. and 35 deg. pointing
angles with scan period = I0 s; a) at 300 km orbit; b) at 830 km orbit.
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This figure shows that all four trajectories intersect only at very few points. It can

be seen that if the measurements are made at the places where at least two

trajectories intersect, the measurements would not be uniformly distributed.

Namely the marginal area would get more measurements than the central region.

The same problem has also been experienced in the research on LAWS. An adaptive

laser shot pattern was suggested to cope with this problem. This adaptive shot

pattern is designed to control slew rates of the scanner and schedule pulse

suppression in regions of low information potential [23]. A similar method can be

applied to RAWS. In fact, the RAWS has the advantage of two antenna beams which

can lead to a more evenly distributed measurement pattern. However, we leave this

topic for future study.

With the intention of simplifying the analysis of the error bounds of the

estimation of wind speed in the next section, we will consider the measurements are

being made only at places where two beam trajectories intersect. This may not be

necessary in practice, since we have assumed that the wind field being measured is

much larger than the resolution volume. Thus, all of the measurements of Doppler

frequencies in a I00 km by 100 km area could be freely combined to derive the wind

vectors in this area. However, measurements of Doppler frequency with pointing

vectors close together may give more accurate estimates.

To further simplify the error analysis in the following section, assume that

we only want to make measurements at the intersections of the trajectories of the

antenna beams with the same elevation angle. We can pre-calculate these points

with the following equation

(2n + 1)x-2 0 = t0 t

2 h tan¢i cos 0 = vt

n = 0,1,2,...

or

where

2toh tan(_i

v
cos 0 + 20 -(2n + 1) _ = 0 n = 0,1,2 ..... (3.12)
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v --- satellite speed

h = orbit height

_i = elevation angle

0 = horizontal angle

With Ts=10 s, _i=30 ° and ¢_2= 35 °. the above equation can be solved numerically.

Table 3.3 lists the positive angles at which two trajectories intersect. Since the

trajectories of beams are symmetrical about the ground track of the satellite, the

negative angles can be obtained by adding minus signs to the values listed in Table

3.3.

Table 3.3 Roots of equation (3.12)

0 in rad ( $ = 30 °)

0.307

0.79

1.084

1.3357

Oinrad (_=35 °)

O2.567

0.70_

0.964

1.182

1.38

3.2.3 TRACKING THE DOPPLER SHIFT CAUSED BY SATELLITE MOTION

In the context of calculating the error bound for wind speed we made the

assumption that the Doppler shift due to the satellite motion could be accurately

compensated. In the following, we will discuss a strategy used to compensate this

Doppler shift. As shown in Figure 3.7, which illustrates a simplified block diagram

of the radar system, two stages are used in compensating the Doppler shift by

tracking the mean Doppler frequency of clutter return. In the first stage, the

compensation is accomplished through an inertial navigation system sending

antenna pointing angle information to a control processor. The control processor

tunes a voltage-controlled oscillator (VCO) to counterbalance the Doppler shift

caused by satellite motion according to the information given. This is an open-loop

system; the compensation error is dependent on the accuracy of the information

provided by the inertial navigation system. The second stage compensation is

carried out by a closed loop tracking system. This tracking system can be
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implemented by a digital phase lock loop, an analog phase-lock loop, or a

combination of a Kalman filter and a phase lock loop. In the following, we assume

that the second stage compensation is performed by a second-order analog phase

lock loop.

Transmitter

Digital Signal
Processing

Inertial

Navigation
System Control t

Processor

Figure 3.7. Functional Block Diagram of Radar Wind Sounder. It
shows the two stage tracking of the Doppler shift caused by satellite
motion.

Denote the velocity of the satellite, u, the pointing vectors r and the Doppler

shift fD. Asume the satellite is heading in x direction. Then u, r and fD can be

expressed as:

and

U=VX

r=- sine cos$ • + sin(} stn_ y +cosO z

2u

fD = -_- r (3.13}
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Then, the bound of the remaining Doppler frequency after the first-stage

compensation can be expressed as

?v
AfD -__ [COS0 COS(_A0 + sin 0 sin (_A_]

2v
< -_- cos(O- _} max[ aO. _) (3.14)

where A0 and a¢_ are remaining antenna pointing errors after the compensation by

the first-stage tracking. If the pointing errors can be reduced to less than I mr by the

inertial navigation system of the satellite (according to the LAWS report [9], the

pointing error is on the order of tens of microradians), the bound of td"D is about 2

kHz at f--35.5 GHz.

In the following, a computer simulation of the error of the dynamic tracking

carried out by a second-order phase-lock loop is completed. Investigation of more

advanced tracking methods is left to further studies.

PD LPF

': .......:i i°

0A i_- ]

VCO

Figure 3.8. Equivalent linearized baseband model of a PLL.
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3.2.3.1 FREQUENCY TRACKING BY A PHASE LOCK LOOP

As shown in Figure 3.8, a phase lock loop (PLL) consists of a phase detector

(PD), a low pass filter, and a voltage-controlled oscillator(VCO). The low-pass filter

can be first, second, or third order, which is also referred to as the order for the PLL.

The input signal to the PLL is usually modeled as the sum of the signal s(t) and the

noise n(t)

y(t) = s(t) + n(t)

with

s(t) = A(ti sin(coot + (_(t))

n(t) = nc cos coot + n s sin o_ot

where both nc and ns are narrow-band Gaussian noise processes.

detector can be modeled by an ideal multiplier whose output equals

e(t) = KD [ sin(_(t) + n'(t) )]

The phase

with

K D = Kvc o A

Kvc o = amplitude of the VCO signal

0 = phase of the input signal
A

0 = phase ofVCO
A

= 0 -0 = phase error

and n'(t} is also a narrow band Gaussian noise which has the following relation with

the input noise n(t)

nc(t_____)co,_ns(t) .
n'(t) X +T SmU
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L_APPROACH

When the phase error el, is very small, the PLL can be approximated by a

linear system with the following transfer function

^ Kvco KD F(s)
0(s) s

= H(s) - F(s)
1 + Kvco KD

S

(3.15)

For a second order PLL with perfect integrators, the error transfer function can be

written as [48-49]:

0e(S) s2

= 2
0i(s) s2 +2_¢anS + con

(3.16)

with _ the loop damping factor, On the natural frequency. The input noise power to

a phase lock loop is equal to

4-00

pN =1
_ Snn(¢O) do) = N O BIF

.OO

(3.17)

where Snn(co) is power spectra/density of input signal, BIF is IF bandwidth. The

bandwidth of the phase-lock loop is generally much smaller than the IF bandwidth

and is defined as:

_'OO

1

BL=2-_ f JHnn(co)J2dco

_00

Hz (3.18)

The SNR in the loop is defined as
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1 A 2 BIF

P= 2-NoB L - SNRi--B-_L

e

(3.19)

where SNR i is input SNR. For more detailed descriptions of these parameters in a

phase-lock loop, one can refer to [48], [50], [5 I].

LOCK LIMIT, HOLD-IN RANGES

The hold-in range is defined as the input frequency range over which the

loop can sustain a lock status. The hold-in range for a frequency offset of PLL is

shown [48] as

AcaH = + Kvc o K D (3.20)

Similarly, the maximum permissible rate of change of input frequency is limited by

2
A¢o" = _n (3.21)

These two parameters are important in computer simulations of the PLL since the input

signal cannot have a frequency offset or a change of frequency rate larger than those set by

(3.20-3.21). Otherwise, the loop would lose the tracking.

NON-LINEAR ANALYSIS

Linear analysis is valid when the input phase error is small and the loop

SNR is high. However, to study the dynamic behavior of PLUs, we need to consider

the non-linear properties of the PLL. As an analytical solution is difficult to

achieve for a second or a higher order PLL, we resort to computer simulation for the

tracking problem by the PLL. First, we need to develop a state variable equation for

a second order PLL. An equivalent function block diagram of a second order PLL

with perfect integrators is shown in Figure 3.9.
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Figure 3.9. Equivalent block diagram of a second order PLL with
perfect integrators.

The corresponding state variable equation is:

dq) / dt = - 2_con [sin _ + n'] - x + d0/dt

dx / dt = _ [sin • + n']

(3.22)

In the computer simulation of this stochastic system represented by (3.22),

the following parameters are chosen:

d0/dt = 2000 u(t) sincost, input signal to the PLL

where u(t) is a uni t step function.

cos = angular speed of scan

=0.5

con - 100

n' = a narrow band Gaussian random process, generated by an

AR(1) filter.
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Figure 3.10. Monte-Carlo simulation of tracking error by a second
order PLL with perfect integrator; a) ensemble average; b) standard
deviation of frequency error
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A 4th-orderRunge-Kuttamethodis usedin the simulations. It wasshown

that usingtheRunge-Kuttamethodin computersimulationof a randomsystem,the

result is equivalentto the definition of Ito stochasticequation[52-54]. Figure3.10

presents the Monte Carlo simulation. As expectedthe RMS error of tracking
frequencydependson theSNRin the loop. Whenthe SNRis highthe RMSerror in
frequencytracking is very small.

3.3 MEASUREMENT ERRORS OF WIND SPEED DUE TO ANTENNA

POINTING ERROR AND FREQUENCY MEASUREMENT ERROR

3.3.1 BASIC EQUATIONS

where

The Doppler frequencies observed by the radar can be represented as

2(u w - us - ua)
fDi = _. * ri i= 1,2,3 (3.23)

Uw = the velocity of the wind field

Us = the velocity of the spacecraft

Ua = the velocity of the phase center of the antenna

r i = the antenna pointing vectors

_. = the wavelength

Assume that the Doppler shift due to the motion of the satellite and the rotation of

the antenna can be accurately compensated, and let fi be the measured mean

Doppler frequencies, _ be the antenna elevation pointing angles, 0i be the antenna

azimuth pointing angles, and Wx, Wy, Wz be the x,y,z components of the wind

velocity. We can rewrite equation (3.23) in a matrix form:

where

FD = A W 2/), (3.24)

rfl]FD = f2

f3
W_.

Wx

Wy

W Z

(3.25)

ri = sin _icos 0j x + sin _i sin 0j y + cos _i z

with i=1, 2,3 and j=1,2,3

(3.26)
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So A has the followingform:

A_

sin(_lCOS01 sin_lsin01 cos_ 1

sin_)2cos02 sin_)2sin02 cos¢_2

sin(_3cos03 sin_3sin03 cos(_3

(3.27)

In practice _biand 0j can only equal to a limited set of values which depend on

the antenna pointing angles, the antenna scan schemes, and the measurement

pattern used in the system. For example, the elevation angle _i can only be equal to

30 ° or 35 ° .

Furthermore, if we assume that the vertical component is independent of the

horizontal components and can be estimated separately from the horizontal

components, we can write the above matrices in a two-dimensional format.

sin_lcos01 sin_lsin01

A = _sin(_2cos02 sin(_2sin02
(3.28)

and

If11 i= W--

FD f2 Wy
(3.29)

Notice that the elements in FD of (3.29} are not direct measurements of the

Doppler frequencies. They are equal to the subtraction of the Doppler shifts caused

by the vertical component of the hydrometeor motion from the measured Doppler

frequencies.

3.3.2 ERROR ANALYSIS

The major sources of errors in calculating the wind fields are a) estimation

errors of the mean Doppler frequencies, b) estimation errors of antenna pointing
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angles,and c) tracking errors of the meanDopplerfrequencycausedby satellite

motion. In the following section,we assumethat the Doppler shift causedby
satellite motion is accuratelycompensated,and discussonly the error bounds of

wind measurementsresulting from antennapointing errorsand estimaUonerrors
of meanDopplerfrequencies.

3.3.3 ERROR BOUND CAUSED BY FREQUENCY UNCERTAINTY

When we express the linear equation of (3.24) in a vector form, and under the

assumption that there is no antenna pointing error, the error resulting from

uncertainties in frequency measurements is equal to

8Wf = A "1 8F D _./2 (3.30)

where _F D is the frequency uncertainty and 8Wf is the error in the wind-field

estimates. To derive the upper bound of equation (3.30), we take A" 1 as a linear

operator in a metric space. The definition of the norm of A" I in a metric space is

equal to

IIA-111=m.×IIA1" II (3.31)

]l'Jl=1
where z is an any unit vector in the metric space [55]. It is known for a linear

operator in a metric space that the following relationship holds:

IIA,<II_ IIAIIII',ll (3.32)

where • is any vector in the metric space. Using this equation, the upper bound of

equation (3.30} can be expressed as:

II5wfil_ IIA-111IISFDII_,/2 (3.33)
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Up to nowwedid not specifywhich normor metric spaceto beusedin this

discussion. The choiceof normoftendependsuponthe objectiveand analysis,as
well as mathematical convenience. It is usually difficult to find the norm of a

linear operator in an arbitrary metric space. However, if the metric space is chosen

to be loospace, the norm of A" 1 is well derived as the maximum row sum of absolute

magnitudes in A- 1155-56]:

[[A-a[I= max ]aij [ i = 1,2..... M (3.34)

where N and M are numbers of columns and rows in A respectively, With IIA-III

defined as in (3.34), we can always find a unit vector _F D such that when 8FD is

substituted into equation (3.33), then the left side of (3.33) is equal to the right side.

Therefore, equation (3.33) is the minimum upper bound of measurement errors in

the I space. With values in a limited set of pointing angles 0 given in Table 3.3,

from equation (3.34), we have numerically calculated the norm of A" 1 The results

are listed in Table 3.4.

Table 3.4 Norm of linear operator A-lin Ioo space

01intad "'H^-IIW
0.307 6.617

0.79 2.843

1.084 4.27

1.336 8.57

02 in rad I[A" 11[

0.2567 6.866

0.702 2.69

0.964 3.06

1.182 4.6

1.38 9.2

Therefore, under the assumed condition, from equation (3.33) the upper

bound of the measurement errors of the wind fields due to uncertainty in frequency

measurement is
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II_wfll < 4.6 x IISFD]I (3.35)

so that if the required wind measurement error is to be less than 1 ms" 1, the errors

of mean Doppler frequency measurements need to be less than 23 Hz. This result

may be overly optimistic since it does not take into account errors in the

measurements of the vertical components of wind vectors.

3.3.3 ERROR DUE TO UNCERTAINTIES IN ANTENNA POINTING ANGLES

The error analysis due to the antenna pointing error involves the analysis of

a non-linear operator in a metric space. The analysis of a non-linear operator is

usually much more difficult than that of a linear operator. If the operator is

differentiable (in our case, it certainly is). the errors resulting from small errors in

antenna pointing angle 0 and _ can be expressed as [56]:

M N

II
i=1 j=l

where 8Wa are vectors of errors, &_i and 8ej are antenna pointing errors, and M and

N are numbers of different elevation angles and different horizontal angles in

matrix A respectively. Again, by using the relationship ]IA • li < [[A li II • II and F D

= A W 2/k, the above equation can be rewritten as

Iiawa[I_, A -18,i + A -1 80i AIIIIw II

j=l

(3.37)

where
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dA, 0,All
]=I

(3.38)

is a non-linear operator. We calculated the norm of this non-linear operator in a |

space with the angles listed in table 3.3. For 8_ = 0.001 rad and 88 = 0.001 rad, the

norm is listed in Table 3.5.

Table 3.5 Norm of non-linear operator (3.38) in I space

Space shuttle orbit

O1 in rad H- ]1

0.307 0.0086

0.79 0.(3027

1.084 0.0(361

1.336 0.0113

Near polar orbit

01in tad II. II

09567 0.0093

0.702 0.00fi9

0.964 0.0034

1.182 0.006

1.38 0.0125

According to the value in Table 3.5, the wind error caused by an antenna pointing

error of 0.001 rad can be calculated with equation 3.37:

[[ 5"Wa[[ _ 0.0125 [I W [I

3.3.4 THE TOTAL ERROR BOUND

The compound error in one measurement due to both uncertainties in

frequency measurement and in pointing angle can be written as:

IIawflla_ IIFDII + 13IIwll (3.39)

where a and _ are constants whose values are dependent upon the antenna pointing

angles, the scan mode, and the measurement pattern as well as the number of
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independentmeasurements.For a singlemeasurementof a wind vector,under the
condition discussed in the section 3.3.3, a is 4.6_. and _ is 0.0125, If the second term

in equation (3.39) is ignored, to obtain 1 ms" 1 accuracy in measurements of wind

vectors, the frequency errors need to be less than 23 Hz. Notice, from equation

(3.39), that the measurement error resulting from the antenna pointing error is

increased with the true wind speed.

3.4 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

a) The second term of equation (3.44) depends upon the true windspeed. When

the windspeed increases, the error in the measurement due to a fixed antenna

pointing-angle error also increases.

b) Throughout the numerical calculations of the norms, we have assumed

that the vertical components of the wind vectors were known. In practice, the

estimation or measurement of vertical velocity certainly contains error. Therefore,

the norm should be larger than those calculated in this chapter.

c) We have assumed that the Doppler shii_ due to satellite movement can be

very accurately compensated. Otherwise it will cause a bias in the wind

measurement due to the compensation errors.

d) The above error analysis is based upon the errors in measurements of the

mean Doppler frequency and estimation of the Doppler shift of the satellite.

However, these estimation errors and measurement errors are usually functions of

the SNR of the received signal. A final analysis concerning SNR of the system

should be performed.

e) The error analysis conducted above is crude; there may be other factors

which need to be considered in evaluation of the performance. A method used in the

LAWS study may also be applicable to the RAWS: namely error analysis through

computer simulation. In that method, the error is analyzed by using a Monte Carlo

technique; each source of error is considered independently, and values are assigned

to the sources by using random number generators that have the appropriate

distribution functions. This can be used as a topic of future study.
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f) Comparingthe prf of a lidar system(about8 Hzfor LAWS}and theprf of a

radar system(3480Hzin ourcase),it seemsthat theradarsystemhasanadvantage
of using higher prf than the lldar system. However,for measurementof Doppler

shift, the lidar onlyneedsonepulsewhile theradarsystemneeds64or morepulses.
Thusthe radar systemonlyhasa slight advantageon prf overthe lidar systemwith
the current technology.
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Chapter 4

Estimation of Moments of Power

Spectrum

4.1 MOMENTS OF SPECTRUM

In Doppler radar signal processing, iare often required to estimates of the moments

of the power spectra of radar echoes. An ith moment of the power spectral density of

echoed signal, m i, is defined as:

+OO

ffi S(f) df

o00

m.
1 +oo

J'S(f) df
.00

(4.1)

where S(f) is the power spectral density function of the signal. For most weather

radars, only the first three moments are important [44]:

(1) mean power of the signal or zeroth moment which indicates the total

signal energy returned from the target. In wind measurements from clouds, the

zeroth moment is proportional to the echo from hydrometeors, and it may also

reflect the attenuation caused by clouds or precipitation. This information may be

useful for deriving the precipitation rate. However, it does not directly relate to the

winds.

(2) the mean Doppler velocity or the first moment of the normalized power

spectral density is a measure of the radial component of the target velocity. This is

an essential parameter in the estimation of wind vectors, and reflects a weighted

average radial velocity of wind fields.
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(3)The secondmomentis useful for derivingthe root-mean-square(RMS)

width of the powerspectrum(or spectralwidth). It is a measureof the velocity
dispersion,i.e., theshearor turbulencewithin a resolutionvolume.

In the study of airborne radar wind sensors, the first moment is the

fundamental variable for deriving the Doppler shift caused by the wind-driven
dropletsin clouds. Thespectralwidth derivedfromthefirst and thesecondmoment

may be useful for determiningthe error in estimatesof the first moment. In this

chapter, we discuss the algorithms for estimating the first momentof the power
spectral density. Monte Carlo simulations were appliedto evaluatethe second-

order statistics of the algorithms discussedin this chapter. Since all of the

estimatorsare functionsof the SNRand the spectralwidth, resultsof the computer
simulations are presentedwith the RMSerrors asfunctions of SNRsand spectral
widths. The discussionand the computersimulations are basedon normalized

frequencieswhich rangefrom -1 to 1. However,the results canbeeasilyconverted

to a specific application like RAWS,by multiplying the results with the Nyquist
frequency.

4.2 INTRODUCTION TO RANDOM SIGNALS AND SPECTRAL ANALYSIS

4.2.1 RANDOM PROCESS

Before we discuss the algorithms for estimating the moments of the

frequency spectrum, let us briefly review some pertinent concepts of random

processes and their power spectral densities.

STATIONARY PROCESS

A process x(t] is said to be a wide sense(or weakly) stationary process if and

only if both the expected value and the variance of the random process are constants

and its covariance between the values at any two time points, tl and t2, depends

only on (t2-tl), the interval between the time points, and not on the location of the

points along the time _s. Mathematically, we can express these conditions as:
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E(x(t)) = I_

var(x(t)) = 0 2

t=

Rxx(t 1,t2)= E(X(tl) x (t2)) = Rxx(t2-t 1) (4.2)

Radar echoes are often assumed to be stationary random processes; at least over

short periods, most radar echoes do resemble stationary processes. There are cases

in which the radar echoes cannot be considered as stationary processes. One such

example is that the antenna sweeps over several beamwidths during a

measurement, the radar echoes may come from several different resolution

volumes. Therefore, the spectrum of the radar echo may be gradually changing

during the measurement, and may not be considered as a stationary random

process.

ERGODIC PROPERTIES OF A RANDOM PROCESS

In addition to the assumption of stationarity, we also assume that the radar

echoes are ergodic random processes. A random process x(t) is said to be ergodic ff

its time averages equal its ensemble averages. In almost all of the cases, we may

only be concerned with the ergodicities of a few parameters of a random process.

For example, the ergodicities of the mean and the autocorrelation are essential to

spectral analysis.

4.2.2 POWER SPECTRAL DENSITY

For a stationary random process, the autocorrelation function and the

power spectral density are defined as

Rxx(Z)= E(x(t+z)x(t))

+00

S(t_ = f Rxxlt) e -j2mct dt

OO

(4.3)

(4.4)
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The autocorrelationfuncUonRxx(_)is the Fourier transformof the powerspectral

densityS(f),and providesthe basisfor spectralanalysis.

As a practical matter, one does not usually know the statistical

autocorrelationfunction. Thus, it is often necessaryto assumethat the random
processis ergodicin its first and secondmoments. The statistical autocorrelaUon

function of anergodicrandomprocesscanbewritten as:

+T
lim 1

Rxx(_ )= T--_-- _ x(t+_) x*(t)dt
2T_T

(4.5)

From this equation, it can be shown that the PSD of an ergodic random process is

equal to :

lim 1
S(f) = T---_ E _-_ (t) exp(-j2_ft) (4.6)

The expectation operator is required in the above equation since the ergodicity does

not couple through the Fourier transform; that is, the limit in the above expression

without the expectation operator does not converge in any statistical sense [57] [58].

4.3 COMPUTER SIMULATION OF RANDOM SIGNALS

4.3.1 SHAPE OF THE DOPPLER SPECTRUM

There are two important parameters in describing a stationary random

process; one is the probability density function; and the other is the power-spectral-

density function. A radar echo consists of the sum of the return signal and noise.

The noise is often assumed to be white and Gaussian. Since the radar echoes from a

resolution volume are from multiple scatterers, it is reasonable to assume that the

radar echoes have Gaussian probability distributions as implied by the central

limit theorem. Hence, the power of a radar echo should have an exponential

distribution.
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The shapesof spectraof weather-radarechoesare influencedby both the
shapesof the transmittedpulsesandthe antennapatterns. If weassumethat both

the shapesof transmittedpulsesand the radar pattem can be approximatedby

Gaussianfunctions,theshapesof spectraofweatherechoescanbeapproximatedby
the convolutionsof two Gaussianfunctions, and, should also resembleGaussian

functions. In addition,asthe FourierTransformof aGaussianfunction results in a

Gaussianfunction, the autocorrelationfunction of a weatherradar echois often

assumedto be Gaussian. In the following discussion,wewill alwaysmake the
assumptionthat theshapeofthe spectrumof aweatherradarechois Gaussian.

In the computer simulation of weather radar echoes, besides the shapes of

spectra, we also need to consider the spectral widths of the radar echoes. In the case

of RAWS, because of the high speed of the spacecraft, the spectral widths of the

weather radar echoes are determined primarily by the beamwidth of the antenna.

For example, as derived in Chapter 3, the 3 dB bandwidth of the Doppler frequency

of a returned radar signal at 35 GHz is roughly equal to

2v _ 2v
BD= _-- _i= _-- = 1875 Hz

where v is the velocity of the spacecraft. _ is the wavelength, [3 is the antenna

beamwidth and L is the antenna aperture. The ratio of the bandwidth of the Doppler

frequency to a 3500 I-Iz PRF is equal to

BD 1875

In a pulsed-Doppler radar, the PRF acts like a sampling frequency to the weather

radar echoes. Therefore. from the above calculation, the bandwidth of the Doppler

frequency of radar echoes is approximately half of the Nyquist interval. If we

consider that turbulence, wind shear, motion of the antenna beam, and target drift

all would add decorrelation effects to the returned signals and broaden their

spectra, the actual radar-signal spectral widths may be greater than calculated
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above. A quantitative study of the effect of antenna scan rate on signal
decorrelationcanbefoundin [59].

4.3.2 GENERATING RANDOM VARIABLES WITH SPECIFIC PDFS

In computer simulations of radar signals, it is often necessary to generate

random processes with determined probability density functions and correlation

functions. In this section, we review some of these methods for generating a random

variable with a specified probability density function (PDF). In the next section, we

discuss how to generate a random process with a specified autocorrelation function.

Generating random variables with a specific PDF often starts with

generating a series of uniformly distributed random numbers. Since the computer-

generated random sequence is quasi-random, the random-number generator should

be chosen according to the application. For Monte Carlo simulations with several

hundred runs, and each run requiring thousands of samples, we need to choose a

random number generator which produces statistically uncorrelated numbers with

a very long cycle. For example, in the simulations performed in this chapter, the

random number generator is chosen from [60], and this generator has a cycle of 230.

Generating random variables other than those with uniform distributions

can be achieved through performing transformations on uniformly distributed

random variables. It is known that if two random variables x and y are related by

the expression x = fly), then the PDF ofy is equal to [61]:

In particular, if x is a uniform random variable one can obtain the desired random

variable by the transformation y=F'l(x), where F(y) is the distribution function of y.

For generating some random variables, multi-variable transformations may be

needed. Let x I and x 2 be uniform random variables and Yl and Y2 be random

variables with the desired probability distributions. Then the Joint PDF of Yl and

Y2is
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[ O(xl" x2) Idx dy
P(Yl, Y2) dx dy = p(x 1, x2) O(yl, Y2)

(4.8)

la x.x2 l
where l_1: y2)l the Jacobian determinant.

GENERATING A GAUSSIAN DISTRIBUTION

An important example of the use of variable transformations is the Box-

Muller method for generating random deviates with a normal distribution.

I e "y2/2°2 dy
p(y)dy - _ ¢_

(4.9)

Consider the transformation between two uniform random variables on (0,1), x I. x2

and two quantities Yl, Y2'

Yl = _/-2 In x 1 cos (2_x 2)

Y2 = _-2 In x I sin (2_x 2} (4. lo)

Equivalently we can write

Xl = e[-_ (yil+ Y_)]

1 Y2

x2 = _'_marctan _"_i"1
(4.11)

Now the Jacobian determinant can readily be calculated:

a(x I, x2) =e[-}(Y_ + Y_)]

a (yl, y2)
(4.12)
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Therefore, Y l and Y2 all have normal distributions as a result of the

transformation.

GENERATING AN EXPONENTIAL DISTRIBUTION

The power of a weather radar signal is often exponentially distributed. It

can be generated from a uniform distribution. Let x be a uniformly distributed

random variable and y be an exponentially distributed random variable. With the

transform x = F_) = exp_(-y), y has an exponential distribution.

GENERATING A RAYLEIGH DISTRIBUTION

The voltages of weather signals generally have Rayleigh distributions,

which can be expressed as follows:

p(y) _ X e-y2/2o- _ (4.13)

Therefore, with the transform x = F{y} = e "y2/20, y = _]26(-In(x)) has a Rayleigh

distribution.

4.3.3 GENERATION OF A

AUTOCORRELATION FUNCTION

RANDOM PROCESS WITH A SPECIFIC

4.3.3.1 Uslng An ARMA Model

A large number of random processes can be classified as certain

autoregression and moving-average processes with p as the order of autoregression

and q as the order of moving average. Such autoregression and moving average

processes are usually denoted as ARMA(p,q). Even some random processes, which

cannot be classified as ARMMp,q}, may be approximated by certain ARMA{p,q)

models. Therefore, we may use an ARMA model to simulate the weather radar

echoes. The spectra of radar signals returned from weather targets are expected to be

Gaussian in shape. We may use an autoregression model, AR(p), to approximate

such a process.
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An ARMA(p,q)modelingonly givesthe desired autocorrelation function of

the process. To make the random process have a specific probability distribution

often requires a non-linear transformation after the ARMA modeling. In practice,

such a non-llnear transformation is often difficult to implement. A detailed study

of such methods for generating random processes with specified spectra and

probability distributions can be found in [62].

4.3.3.2 Uslng An Inverse Fourler Transform

Here, we describe a method using an inverse FFT to generate weather-like

signals. This method was discussed in [63] and [64]. We applied this method in

generating weather radar echoes with Gaussian power spectral densities and

exponential probability distribution functions in the computer simulations of this

chapter. As discussed in section 4.2.2, a weather radar signal normally has a

Gaussian-shaped spectrum, and its power is exponentially distributed. The detailed

steps for generating weather signals with an inverse FFT method are depicted below:

* The first step is to specify the power spectrum of the weather radar echo

from a target by

1 e-(fn - fm)2/2a2 n=O,1,...,M-1 (4.14)
Cn-_

where

fn = n th discrete frequency

M = total number of discrete frequencies

Gn = the discrete spectral coefficient corresponding to fn

fm = the power-weighted mean frequency

a = Is the standard deviation of the spectrum, which is defined as

spectral width.

In all the computer simulations of this chapter, fn and fm were normalized with a

Nyquist interval [-1.0, 1.0]. When fn or fm are not in the range of -I.0 to 1.0, allasing

occurs and the spectrum folds into the interval [-1.0, 1.0].
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• Second, we assume the additive noise present in the real signal is white, i.e.,

it has a constant spectral density, and also consider that both simulated signal and

noise powers must be exponentially distributed to represent the weather signal.

Then. we can write the power spectral coefficient for frequency fn as:

Sn = -ln(xn) [K Gn + M-_] (4.15)

where 0 < x n < 1 and is uniformly distributed. PN, the total noise power, can be

arbitrarily set to unity. K is equal to

_/MK= _. Gn
n=0 (4.16)

• The third step is to decompose the power spectrum into its real, An, and

imaginary, B n, components, adhering to the requirement that the phase angles of

the slnusoid comprising the spectrum (i.e.. the phase spectrum of the time signal) be

uncorrelated and uniformly distributed between (-n,_).

112 "2 •
An=S n cos_ nyn)

1/2
Bn = S n sin(2_Yn) (4.17]

where Yn is a random variable uniformly distributed between(0, I). Notice that S I 12

has a Rayleigh distribution, while A n and Bn have Gaussian distributions.

• The final step is to generate the complex time signal by performing an

inverse Fourier transform of An and Bn.

M-I

Zn= In + _Qn = Z(Ai + jBi) e j2_:ni/M (4.18)

i=0

where M is the number of samples.
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Frequency

Figure 4.1. Example of computer simulated spectrum of a random
signal with spectrum width c = 0.3, mean frequency -0.7, and SNR I0
dB.

An example of computer simulated weather radar echo is shown on Figure

4.1. The frequency is normalized to [-1,1]. The mean frequency and the standard

deviation are -0.7 and 0.3 respectively. In the computer simulations of this chapter,

the total number of sample, M, is chosen as 1024.

4.4 ESTIMATION OF THE MOMENTS OF THE DOPPLER SPECTRUM

The algorithms for estimating of the first moment of the power spectral

densities of radar signals can be classified into the following following three

categories:

• Algorithms based on the Fast Fourier Transform(FFT) of the signal.

• Algorithms based on the covariance funcUon of the signal (also called

pulse-palr method).

• Algorithms based on parametric modeling, such as the autoregressive (AR)

and the moving average (MA| models. Only the autoregressive method

will be discussed in this chapter.

The algorithms based on the FFT method and the ARMA-model method

require evaluation of the power spectral density (PSD) of the return signal first, and
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subsequently the mean of the PSD. The algorithms based on covariance function do

not require the calculation of the PSD of the signal. The ARMA methods may not be

as efficient as the covariance and the FFT methods when the order of the model is

high. In the following sections, we will discuss each of these algorithms in more

detail.

4.4.1 FIT METHOD

The amplitude spectrum for a digital signal is oRen expressed as:

OO

X(e it°) = _ x(n) e -jean

-OO

(4.19)

In practice, however, the amount of data is always limited. One of the most widely

used PSD estimators, based upon an FFT operation, is typically referred to as the

periodogram. For data samples x0 .... ,XN- I, the periodogram estimate of the PSD is

defined as:

N-1 2
a 1
S(f)=-N-_ At _x n e"]2_fnAt (4.20)

n=0

where N is the number of data, At is the sampling interval, and f is in the range of -

I/(2At) <f< 1/(2At). Use of the periodogram permits us to evaluate the PSD at N

equally spaced frequencies fm = rnAf Hz, for m=0,1 ..... N-1 and _f= I/NAt. If the Af
^

factor is incorporated into S(i}. then (4.20) can be written as:

^ I
Ix 12

N-I

Xne-J2mTm/N

n=0

N

2

(4.21)

where Xm are the coefficients discrete Fourier transform (DFT] of x(n).
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Notonly is the periodograma biasedestimatorof the powerspectrum,but it
A

is also not a consistent estimator, i.e. when N goes to infinity, S(f) may not converge

to its mean value statistically [58]. This phenomenon is primarily caused by the

absence of an expectation operator in the above equation. Several methods can be

used to reduce the variance of the periodogram PSD estimators. One of these

methods is to divide a long data sequence into M short sequences, and separately

applying each sequence to the periodogram. The results are then averaged.

Estimation of the mean of the PSD with the periodogram is straightforward,

M-1

_fm Sm

^ 1 m=Of-
fF M-1

m_O

(4.22)

1 I ^
where fF = _-_ is the Nyquist frequency, and fm is defined as _-_ - fF- f ranges from

- 1.0 to 1.0. It can be shown that (4.22) generally is not a consistent estimator for the

mean frequency. Only when the spectral lines are mutually independent, is (4.22) a

consistent estimator (see Appendix 4.1).

In equation (4.22), we did not consider the effect of noise. However, the

estimate of mean frequency of the PSD is often biased by the noise. If we write the

power spectral density for S(frn) as a sum of the spectra of the signal and noise,

S(fm) =Sm + nm

with Sm and n m as the discrete spectral densities of the signal and noise

respectively at frequency fm. Equation (4.22) can now be expressed as follows:
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^ 1

f=fF

M-1

fm(Sm + n m)

m=0
M-1

E(Sm + n m)

m=0

M-1

Efm (_+nm)

m=O

=f-FF (S + N)

m s mN

- 1 + N/"S + 1 + S/N (4.23)

where m s is the first moment of the signal spectrum, m N is the first moment of the

noise spectrum, and N/S is the inverse of the SNR. Therefore the bias caused by the

noise is equal to

m s N/S m N

Bias - 1 + N/S+1 + S/N (4.24)

Notice that in equation (4.24) the bias is a linear function of ms. When the noise is

white, the second term of (4.24) is zero, andthe bias approaches zero as the mean

frequency, ms, approaches zero. This is illustrated by Figure 4.2. When the mean

frequency is zero, there is no bias caused by noise.

In addition to the bias caused by noise, the estimator is also biased by

aliasing of the spectrum of the signal. From Figure 4.2, it can be observed that, at 0

dB SNR, the estimate suffers a considerable amount of bias. The estimate is about

half of the true value of the mean frequency. At 10 dB SNR, the bias is negligibly

small in the middle part of the Nyquist interval, and the estimates almost agree

with the true values of the mean frequencies. However, when the mean frequency

approaches the ends-of the Nyquist interval, thee e-stimates starts to curve towards

the 0 frequency. This phenomenon is caused by the aliasing of the spectra of the

signals. In summary, the FFT estimator of (4.22) only works well when the
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Figure 4.2. Simulation of FFT estimator without de-aliasing and

noise suppression, under the condition a = O. 1, SNR = 0 dB, and 10 dB,
and the number of runs = 200.

signal-to-noise ratio is high and the signal is free of frequency aliasing. In case of

poor SNR and frequency aliasing, the estimated mean frequencies yield very large

errors as shown in Figure 4.2. In the next two sections, we discuss noise suppression

and de-aliasing algorithms that can remove or reduce the bias due to the noise and

frequency aliasing.

4.4.1.1 Estimation of The Mean With Noise Suppression

If we assume that the signal and noise are uncorrelated, and the spectral

density of the noise can be estimated separately, one way to reduce the bias caused

by frequency abasing is to subtract the noise spectral density, N(fm), from the

derived spectral density and calculate the mean of the resulting spectrum, i.e.,

M-1

__.rfm(S(fm) - N(fm))

_= 1 m=0
fF M-1

,_(S(f m) - N(fm))

m=0

(4.25)
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Figure 4.3. Monte Carlo simulation of FFT estimator with noise
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10 dB, with 200 runs; b) RMS errors as functions of frequency and the
spectral width of power spectrum of signal.
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Although this estimator may result in some spectral lines with negative values, the

biases are effectively removed from the estimates. This method was examined by

Sirmans and Bumgarner [64] with computer simulations. Their results can be

summarized as follows: the FFT with noise suppression is an estimator of mean

frequency unbiased by noise even for a low SNR and the standard deviation of the

estimate with the noise suppressed is comparable to the standard deviation of the

signal plus noise mean estimates.

Some of the results of the computer simulations for the noise suppression

scheme are presented in Figure 4.3., which shows that the bias caused by noise is

removed by the noise suppression. However, the estimates of the mean frequency of

the signal are still biased at the frequencies near the ends of the Nyquist interval

because of frequency aliasing.

4.4.1,2 FFT Method with De-allasing

As shown in previous sections, the performance of the FFI" method is

severely degraded by aliasing of the spectrum. This is particularly noticeable when

the spectral width of the signal is large. The effective unambiguous frequency

measured by the FFT estimator can be significantly reduced without application of

a de-aliasing method. One method to reduce the effect of aliasing is to shift the peak

of the spectrum to the center of the Nyquist interval (at zero frequency) before

applying the FFT estimator, and add the shifted frequency back in the final

estimate. Such an algorithm was discussed by Zrnic [65]. In the computer

simulations performed in this chapter, we used a similar method as explained

below:

* a) Smooth the periodogram by weighted running average. The size of the

window used in the smoothing was selected proportional to the spectral

width of the PSD. The maximum size of the window was limited to half of

the Nyquist interval.

° b) Search for the peak of the smoothed spectrum of the data, then locate its

position, say fp.
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° c)Shiftthe entirespectrumsuchthat the peakfp is nowat zerofrequency.

* d)Apply the followingformulato estimatethe meanfrequency,

M-l

fmS'm

^ 1 rn_

f=fP+ fF M-1

_S "m

m=O

where S'm = Sm-p.

(4.26)

In implementing such an algorithm, tradeoffs are encountered in choosing

the size of the smoothing window. If the window size is too small compared with the

spectral width of the data, the algorithm may select a frequency peak which is not

close enough to the true mean frequency, and the bias caused by frequency aliasing

cannot be effecUvely removed. On the other hand, if the width is too large, it will

increase the uncertainty of the location of the peak frequency. In the computer

simulations performed, we chose the widths of the smoothing windows to be

proportional to the spectral width of the signals.

Some results of Monte-Carlo computer simulations of such an algorithm are

presented in Figures 4.4. In these computer simulaUons, the Nyquist intervals are

normalized to [-I, 1]. The standard deviation of the spectrum are chosen to be 0.1.

The RMS error of the estimate is defined as:

RMS ERROR - _J m_=l_-" _2
(4.27)

^

where f miS mth estimate of the mean frequency f, and M is number of runs.
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Theseresults showthat the de-aliasingalgorithm improvesthe performance
of the FFTestimator significantly. Even at a SNR of 0 dB, the estimate is still able

to converge to the true mean frequency, indicating the de-aliased FFT estimator is

an unbiased estimator of mean frequency.

The fact that the de-aliasing method reduces the bias caused by noise is in

agreement with equation (4.25). This equation indicates that, as the mean

frequency goes to zero, the bias caused by noise also goes to zero. After applying step

c) in the de-abasing algorithm, the bias caused by noise acts like a zero-mean

random variable. Hence, the estimates can converge to the true values of the mean

frequencies. However, this is only true when the noise is white For colored noise,

noise suppression may need to be applied before applying the de-aliasing algorithm.

4.4.2 THE COVARIANCE ESTIMATOR

The covariance method for computing the moments of the Doppler spectrum

has come into widespread use in recent years. These methods have been discussed in

many papers: Rummler[66], [67], Benham and Groginsky [68], Miller and

Rochwarger[69], Sirmans and Bumgarner[64], [70], and others. The covariance

method is a time-domain estimator. Therefore, it does not need to estimate the

power-spectral density. One obvious advantage of this method is that it requires

fewer computations. In addition, this method does not require equal time interval

between sampled pairs, This property makes it possible to combine this method

with waveform modulation for removal of range and frequency ambiguities (see

Chapter 5].

The following covariance method for estimating the mean of the spectral

density is described by Sirmans and Bumgarner [64]. This method, also called

pulse-pair processing, is based on the fact that the moments of a random variable x

mn= E(xn) (4.28)

are related to the derivatives of its characteristic function d_(0_), the Fourier

transform of its probability density function with a reversal in sign, by
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dn ¢1)(0)

jn mn _ d xn
(4.29)

Since the autocorrelation function and the power spectral density S(f} constitute a

Fourier transform pair, the moments of the power spectral density are related to the

derivatives of the autocorrelation function by an equation similar to (4.29):

•Rn--_- ) (4.30)
mn= J R(0)

Expressing the covariance function in a polar form

R(%) = A(%)exp[j2ng(%)]

where A(%)is a real even function of %and g(%)is a real odd function of %. The mean of

the PSD is equal to

%=0 %=0

=

Notice that A'(%) is an odd function so that A'(0) =0. This is also true for g(0).

Therefore _ can be approximately written as

^ _(%)-g(o) _ 1
= = m Arg[R(z)] (4.32)

In the computer simulations, a maximum-l_kellhood unbiased estimator of RI%)was

used [691:

N-1
^

Rxx(%) = 1/N __dXn+l X*n (4.33)

n=0
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= 1 arctanl ----R----/ (4.34)

where Xn+ 1 and Xn are complex samples of data, spaced z seconds apart, and t

ranges from -1.0 to 1.0.

one important fact to note is that a large interspacing between two pulse

pairs does not reduce the accuracy of the covariance method. On the contrary,

according to [71], when the interspacing increases, the accuracy of the covariance

method should also increase because more independent samples of R(z) can be

achieved. The results of the Monte-Carlo simulation presented in Figure 4.5 agree

with this fact: the estimator with longer spacing between pulse pairs give smaller

RMS errors. The data used were computer simulated weather radar signals with

Gausian spectra. To select different spacing of pulse pairs, the following formula

was used to calculate Rlz):

M

l_(Z) = _ x(i*k + I) x*(i*k)
l=l

where k is interspacing of pulse pairs. Figure 4.5a shows that the covariance

estimator is a consistent estimator of the mean frequency.

-94-



v

Q

E
_J

1.0-

0.5'

0.0 _

-0.5

-1.0

........ Mean Frequency

with one space j_

' " I ' I " I " I

.0 -0.5 0.0 0.5 1.0

Mean Frequency (Hz)

a)

q-

03

n-

0.020
0.015

0.010

0.005

0.000

.'

with one space

•-----e,--- with seven space

I I I " I

.0 -0.5 0.0 0.5 1.0

Mean Frequency (Hz)

b)

Figure 4.5. Computer Simulation of the Covariance Method with 128

pairs of samples a) mean estimate, with inter-pulse-pair spacing = 1,
7, SNR -- 10 dB, ¢_= 0.I; b) RMS errors with 200 runs. For the RAWS
parameters the scale would be from -1.75 kHz to + 1.75 kHz. The

frequency shown here is normalized to the Nyquist frequency.

- 95 -



4.4.3 THE PARAMETRIC METHODS

Many deterministic and stochastic discrete-time processes encountered in

practice are well approximated by certain rational transfer function models. Such

models, known as the ARMA models, represent random processes, whose PSD are to

be estimated in terms of linear difference equations of the following form:

p q

x(n) = )". ap, i x(n-i) + Z bq,k e(n-k)
i=1 k=0

(4.35)

where bq,0 is 1 and e(n) is a zero-mean white Gaussian noise sequence, x(n) may be

viewed as the response of a linear time-invariant filter whose input is a white noise

sequence. The transfer function of such a filter has the form

q

Z bq,k e'j27tfk
O(f) k=0

H(f) = _(f)- p (4.36)

1- Z ap, ie-j2xfi

k=l

Equation (4.36) consists of two parts: the autoregressive part and the moving-

average part. The autoregressive (AR) portion consists of the poles of the filter and

is the denominator of H(f); the moving average (MA) portion consists of the zeros of

the filter and is the numerator of H(f). The PSD of the random process x(n) is given

by

Sxx(f) = H(-f) H(f) Snn(f) = I H(f) 122m (4.37)

2
where Gnn is the variance of the input noise, or the power spectral density of the noise.
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To examine the performance of the parametric method in evaluating the first

moment of the power spectrum of radar echoes, we will concentrate our attention on

the Autoregressive models. Because the power spectrum of the radar echo is expected

to be Gaussian in shape, it can be approximated by an all-pole form of a transfer

function, or an Autoregressive model as follows:

P

x(n) = )-'. ap, i x(n-i) + en
i=1

(4.38)

where

en = white noise

p = number of poles of the autoregressive model

ap,i = coefficients

There are two ways to solve for the coefficients ap.i: one is to use the Yule-Walker

equation; the other is to use the Levinson-Durbin Algorithm. Both of these methods

are discussed in numerous papers and text books concerning time-series analysis

[57],[72],[73] and [74]. In the following, we will only discuss the Levinson-Durbin

algorithm. The Levinson-Durbin algorithm requires only order O(p 2} operations,

as opposed to O(p 3) for Gaussian elimination in solving the Yule-Walker equation.

The algorithm proceeds recursively to compute the parameter sets :

2
{ a11, _21},{a21, a22, a_}, ..., {apl, ap2 ..... app, ap)

where aij are estimates of the coefficients, and a_ is the estimate of the variance of

en. Note that an additional subscript has been added to the AR coefficients to denote

the order. The final set at order p is the desired solution. In particular, the recursive

algorithm is initialized by
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Rxx(1)

a11- Rxx(0)

2 2)_1 = (1- I all [ Rxx(0)

with the recursion for k = 2, 3 ...... p given by

k-1 1-Rxx{k)+ _ ak-l, nRxx( k-n}

akk- n=l

a2_ I
(4.39)

i

aki= ak_ 1,i + akk= ak_ l,k.i (4.40)

Once the coefficients have been calculated, the

determined from the following

(4.41)

power spectral density can be

a2At
SAR (i_=

1 + _ a k e-2j_kat

k=l (4.42)

The estimate of the firstmoment can be determined from equation {4.22}.Some of

the computer simulation resultsare presented in Figure 4.6. Figure4.6a shows the

ensemble average ofthe estimatesforAR{2} and AR{20); Figure4.6b shows the RMS

errorsforAR{2) and AR{20}. Itshows that the increaseof the order of the AR model

does not improve the accuracy ofthe estimates.

4.4.4 RANDOM SAMPLES AND SPECTRUM ESTIMATION

It is well known that with the conventional equally-spaced samples,

aliasing will occur if the power spectrum falls out of the Nyquist interval. However,
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with unequally spacedsamples,wemayachieveestimatesof the powerspectrumof
a stationaryrandomprocessthat arenot aliased. Perhapsthebest known result is

that Poisson sampling of a stationary process is alias-free [75]. In the following

section, we choose a sampling scheme

tn = nT + y(aT n - 05)T (4.43)

where ATn is a random variable having a uniform distribution on interval [0. I] and

y is in the range [0,1]. To evaluate the power-spectral density, we used an intuitive

formula, which is similar to the definition of PSD for a continuous random signal,

given below

N-I

S(t') = _x(t i) e-JC°ti Ai

n--0

where Ai -- ti+ 1 - ti" To evaluate the first moment, we used the definition:

(4.44)

1/2B
lim 1

m--B_oo B 5f S(f) df (4.45)
-1/2B

When y = O, this sampling scheme is identical to the equally spaced sampling

scheme and the power-spectrum estimate is equivalent to the DFT method. When y

= 1.0, this sampling scheme achieves maximum randomness. Computer

simulations were performed using this scheme. The results show that for a signal

with a small spectrum width (CTN< 0.I), the random sampling scheme does give an

alias-free estimate of the power spectrum with reduced SNR. However, when the

spectrum width is large, the shape of the estimated PSD is not discernable. Some

work done on random sampling can also be found in [76].
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4.5 RESULTS OF COMPUTER SIMULATIONS, CONCLUSIONS, AND

FUTURE WORK

4.5.1 MONTE CARLO SIMULATION OF THE ESTIMATORS

To compare the statistical properties of the algorithms discussed in this

chapter, several Monte-Carlo simulations were completed, each with 200 runs and

128 samples, to calculate the RMS errors for each of the algorithms under different

frequencies, spectral widths, and SNRs. The frequencies are normalized to two

Nyquist intervals; one is the unit Nyquist interval from -1.0 Hz to 1.0 Hz, the other

is from -1750.0 Hz to 1750.0 Hz used by the RAWS. The RMS errors are calculated

according to equation (4.27).

The results are presented in Figures 4.7 to 4.12. In Figures 4.7 to 4.9, the RMS

errors are plotted as functions of both SNRs and frequencies. In Figures 4.10 to 4.12,

the RMS errors are presented as functions of SNRs and spectral widths of the

signals. The results indicate that all three estimators are unbiased; the ensemble

averages of the estimates converge to the true mean frequencies of the signals. The

RMS errors of estimates in these algorithms are independent of frequency.

However, the RMS errors are linear functions of the spectra] widths of the spectra of

the signals in the range of 0.0 Hz to 0.4 Hz for the unit Nyquist interval, or in the

range of 0.0 Hz to 700 Hz for RAWS's Nyquist interval.

In comparing of Figures 4.7 to 4.9, it can be seen that when the SNR is high,

for example 10 dB, all three estimators give similar performance in term of mean-

square errors in estimation. However, when the SNR decreases to 0 dB, the

covariance method produces the smallest estimate errors of the three; at 0 dB SNR,

the AR(2} estimator is slightly better than the FFT estimator. Previous work

performed with these estimators appeared to indicate that the AR(p) modeling

should require more computation than the FFT estimator. However, when the order

of the autoregressive model p is low, such as 2 in our simulation, the estimator

based on an autoregressive model may need less computation power than the FFT

estimator.
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4.5.3 CONCLUSIONS AND FURTHER WORK

The de-aliased FFT, the covariance estimator, and the AR estimator are

comparable in performance. The errors in the estimates depend on the spectral

width and SNRs of the input signals. The errors are mainly functions of the spectral

widths of the signals when the SNR is above 5 dB. As discussed in the introduction,

the spectral widths of the signals in RAWS are expected to be half of the Nyquist

interval. In such cases, all the estimators discussed in this chapter produce large

estimation errors, about 10% of the Nyquist frequency. This means, for a 3500 Hz

PRF, the RMS errors are around 175 Hz. Part of the estimate error is caused by

aliasing of frequency spectrum. To reduce the estimation error caused by aliasing of

the spectrum, we need either to increase the PRF or to reduce the inter-spacing

between the two pulses in the covariance method. In Chapter 5, we discuss how to

use the latter combined with waveform modulations to mitigate the ambiguity

problems as well as to reduce the estimation errors caused by aIiasing of spectrum.
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In this chapter,wediscussedthe performanceof severalestimatorsof mean

frequency: the FFTestimator,the covariance estimator, and the estimators based

on autoregressive models. The covariance estimator seemed to produce slightly

smaller errors than the FFT estimator and the autoregressive-model-based

estimators in the computer simulations. However, this is true only under the

condition that the power spectrum is symmetric and has only one peak. In practice,

interference caused by leakage from the transmitter, or clutter, may cause the

retumed signals to be non-symmetric or have more than one peak. In these cases,

the covariance method may not work as well as the other estimators. We only

discussed two autoregressive-model-based estimators, AR(2) and AR(20). The results

showed that there was no difference between these two estimators in terms of the

estimation errors. We also discussed the random sampling method to estimate

spectra of signals. Because of limits on time and volume, we did not investigate the

random sampling method in great depth.
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APPENDIX 4A PROOF THAT THE FFT ESTIMATOR FOR MEAN IS

CONSISTENT

To prove that (4.22) is a consistent estimator of mean frequency, we must

show that as M approaches infinity, the variance of (4.22) approaches zero. Let S(f i)

be denoted as Si _f, and without loss of generality, assume that

M-1

ES(fi) = 1,
i=o

then

vat( i=0_"fiS(fi))= _l i__Zfi Si rue2- I/i___0fi E(Si) Af2

M-1 M-1

i=0 J =0

M-I M-I

= Z Z fi5PslsJi=0 J=0

Theoretically, the above result is bound by the following inequalities:

where

M-1 M-1 M-1 M-1 M-1

i=0 i:O J i:0 J

(4.47)

m I : the first moment of the power spectrum

M = total number of samples

f_j = cross correlation coefficients between spectral line i and spectral

line J

a i = standard deviation of spectral line i
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When the spectral lines are mutually independent, the cross-correlation
coefficients are

I when i = jPi,j =
0 when i _ j

Under this condition, when M goes to infinity, the variance of the FFT estimator

approaches zero because af = 1/M. Therefore, the estimator is a consistent

estimator. On the other hand, if the spectral lines are not mutually independent,

the variance is bounded by the square of ml. Therefore, when spectral lines are not

mutually independent, only when m I is equal to zero is the FFT estimator a

consistent estimator.
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Chapter 5

Algorithms for Removal of Range and
Frequency Ambiguities

5.1 INTRODUCTION

The characteristics of radar echoes from weather targets impose limitations

and tradeoffs on applications of Doppler radar systems for weather observation.

Such limitations come from two facts: a) weather targets are distributed quasi-

continuously over large spatial regions (tens to hundreds of kilometers), and the

strength of radar echoes from a significant weather target easily spans an 80 dB

power range [59]; b) the mean Doppler frequencies of radar echoes from weather

targets are often higher than the maximum unambiguous frequency of the radar

system. In other words, the inherent ambiguity problem in radar systems becomes

more prominent in weather radars.

For pulsed-Doppler radars, the unambiguous range, ra, is generally defined

as the maximum distance that a transmitted pulse can travel to a target and echo

back to the radar receiver before the next pulse is transmitted. The maximum

unambiguous frequency is generally considered as half of the PRF. When a target

area is located beyond the unambiguous range, the echoes returning from that area

arrive after the next pulse is transmitted. This creates what is commonly referred

to as range ambiguity. Radars having uniform PRF and without some form of

coding from pulseto pulse cannot discriminate between echoes coming from targets

located within the unambiguous range,and those outside this range.

The maximum unambiguous velocity, v a, measured by a Doppler radar is

related to the maximum unambiguous frequency by

Va = -+k prf/4
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where _. is the radar wavelength. A velocity higher than the maximum

unambiguous velocity causes frequency ambiguity. Range ambiguity and velocity

ambiguity are not independent; it can be shown that vara=kC/8. This relation

indicates that either the unambiguous range or unambiguous velocity can be

increased only at the expense of the other.

For example, in the conceptual model of RAWS described in Chapter 3, the

PRF is set to 3500 Hz to avoid range ambiguity. However, if the radar needs to

measure 60 m s-1 wind speed, the maximum Doppler frequency of radar echoes

caused by wind will be 14200 Hz at 35 GHz. This frequency is 8 times as large as the

Nyquist frequency of 1775 Hz, and will certainly create frequency-ambiguity

problems. In such a case, the true mean frequency of the signal cannot be measured

correctly with the conventional methods because of frequency aliasing. On the

other hand, if we choose the PRF high enough to satisfy the Nyquist criterion, say

PRF = 29000 Hz, there will be no frequency ambiguity. However, with a maximum

range of 20 km the radar echoes from different transmitted pulses will overlap.

Therefore, to saUsfy the required maximum frequency and range of RAWS we have

to solve the radar ambiguity problems.

The algorithms developed thus far for reducing radar ambiguities can be

classified into one of the following categories:

• Interpulse phase coding: in an interpulse phase coding method, the

transmitted pulses are modulated with a sequence of discrete phase codes. At the

receiver, a coherent reference signal is used to correlate with the received signals

from a specific trip. The objective of the phase coding is to make signals returned

from different trips have poor cross correlations. Therefore, the interference

between echoes from different trips can be reduced. In general, after coherent

processing, the interference from overlaid echoes appears like white noise.

• Multiple pulse-repetition-frequency methods or multiple pulse-repeUtion-

time methods. These methods are also known as staggered PRF or staggered PRT
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methods. In these methods, pulses are transmitted with two or more different PRF's

or PRT's. The estimates from each PRF or PRT can be combined or correlated to find

the true mean frequencies of the signals. With staggered PRF or staggered PRT

methods, the maximum unambiguous frequency of a radar system can be extended.

* PolarizaUon coding from pulse to pulse and frequency hopping from pulse

to pulse: Doviak and Sirmans [81] suggested an orthogonal polarization coding for

successive pulses. In this method, two orthogonal polarizations are used for two

successive pulses. Therefore, the overlaying between the radar echoes from the first

trip and the second trip is reduced by the polarization of the antenna. However, the

depolarization by hydrometeors and the radar system limits this method to about

20 dB of suppression of the interference. The frequency-hopping method was

suggested by Doviak and Zrnic [44]. In that method, consecutive pulse pairs are

transmitted at different frequency steps; therefore, the echoes from different pulse

pairs can be separated by filters.

• Since the wind profiles are normally continuous in both frequency and

space, the frequency ambiguities could be corrected by removing the discontinuities

in the wind profiles. Such a method was demonstrated by Jiro [82].

The first three algorithms mentioned above are related to inter-pulse coding

in either phase, polarization or pulse position. In this chapter, we will further

discuss these methods, and compare their performance with computer simulations.

Since the radar ambiguity function is a widely used tool for analyzing and studying

the ambiguities of waveforms of radar signals [83], we will also discuss the

algorithms for removal of radar ambiguities in term of their radar ambiguity

functions. To compare the performances of different algorithms, Monte Carlo

simulations were performed to calculate the second-order statistics of these

algorithms. In addition, a new algorithm for reducing range and Doppler

ambiguities using waveform modulation is discussed.
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5.2 INTERPULSE PHASE CODING

In the following sections, we will examine the performance of different

ambiguity-removal methods through the Interpretations of their radar ambiguity

functions. As we know, a radar ambiguity function can be used to show the

properties of range resolution, frequency resolution, and the distribution of

ambiguities for a particular waveform. We will correlate the radar ambiguity

functions of the algorithms discussed in this chapter with their performance in

estimating the mean frequencies. Before discussing the algorithms, we briefly

review the properties of ambiguity functions. A detailed discussion on ambiguity

functions of radar wavefomas can be found In [82].

5.2.1 RADAR AMBIGUITY FUNCTIONS

The response function for a radar signal has two basic forms:

+OO

Xu(_' _) = I u(t) u*(t+_) e"j2_t dt
.00

(5.1)

4-0O

Xu(Z, _) = I U(f+(DU*(D e-j2_fz df (5.2)
.00

where u(t) is the transmitted signal and U(f) is the Fourier transform of u(t). The

response functions given in (5.1) and (5.2} were derived by using the definition of a

matched filter and thus are sometimes called the matched-filter response functions.

The ambiquity function is defined as l _ 12.

The function X(x,_) for a fixed _ and a fixed x describes the amplitude

modulation of the signal at the output of a receiver filter from a target with a

Doppler shift _ relative to the center frequency of the filter and a delay _ from the
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time to which the filter is matched. The response function can also be interpreted as

the correlation between the transmitted complex waveform u(t) shifted by the

Doppler frequency _, u(t)e'J_ t, and u(t) itself, where the shift ¢=0 occurs at time T 0.

When _=0, the response function reduces to the autocorrelation function of the

transmitted signal u(t). To avoid misinterpretation, hereafter in this chapter we

refer to I_ I as the ambiguity function.

Several of the important properties of a radar signal can be determined from

its ambiguity function. An ambiguity function has its peak value centered at the

origin, indicating that the largest signal output occurs when a target has the range

and velocity to which the filter is matched. In practice, being matched to a

particular range and Doppler means that the filter is (1) sampled at the time

corresponding to the round-trip delay of the transmitted signal to a target and (2)

tuned in frequency to the Doppler shift corresponding to the radial velocity of the

target.

Targets which appear at ranges and velocities such that ] _C(¢,¢)[ is about as

large as [_(0,0) [ are indistinguishable to the radar. The width of the peak about (0.0)

defines the resolution of the waveform. Other peaks away from (0,0) correspond to

the ambiguities of the waveform. The minimum distance in the delay-time domain

between the peaks other than the origin and the peak in the origin corresponds to

the maximum unambiguous range; similarly, the minimum distance in the

Doppler-frequency domain between the peaks other than the origin and the one in

the origin corresponds to the maximum unambiguous frequency.

Ambiguity functions can also be used to study clutter rejection. Clutter can

be described as any unwanted backscatter. Waveforms having _(_,_) _.:0 in the region

of the _ plane where clutter exists generally have good clutter-rejection properties.

More precisely, the summation over the entire ¢_ plane of the product of I_(¢,_) [ 2

with the clutter distribution over the _ plane determines the total interfering

clutter signal. The energy of the clutter can be calculated from the following

equation:
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-1-oo

c =j'j"p('_.,) o(.c.¢,)[zCc._,)2d.cd¢
-oo (5.3)

where o(_,¢) is the backscatter cross section of the clutter, and p(z,¢) is the density

function of clutter. Notice the spreading loss factor (4n) 3 R4 is omitted in the above

equation.

A cross-ambiguity function describes the situationwhen the receiver filter is

matched to a modulation v(t) which is different from the transmitted modulation

u(t). The cross-amblguity function is defined in the following forms:

+OO

Xuv(Z, ¢) = ] u(t) v*(t + z)e "j2n*z dt (5.4)
.00

Or

+o0

Xuv('t, ¢) = j" U(f+O) V*(f) e -j2gf'c df (5.5)
O0

A cross-ambiguity function can also indicate information about the range and

frequency ambiguities as does an ambiguity function.

As examples of ambiguity functions, the following figures present two

ambiguity functions: one is for a rectangular pulse:

i ,t,,u(t) = _ rect --
elsewhere

where 8 is the pulse width. The ambiguity function of u(t) is

- I15-



_(_,¢)=_
0 when I_128

l, l)sinn_b(8- I, l)

8 _¢(a- l, l)
(5.6)

The other example is a rectangular, linear FM pulse:

The ambiguity function of above u(0 is

Irect (___)ejntpz (8- g__ {)sin n(ozz+ _)(8- lz l)
x(,,+) = n(o_, + ¢)(8 - I, l)

_0 when I, { > 8

(5.7)

As we have mentioned, the ambiguity function represents the output of a matched

filter. The Doppler frequency information is contained in the factor e jnqz. These

ambiguity functions are plotted in Figure 5.1. As indicated by equation (5.7), the

peak of a signal with a Doppler shift 00 would also shift in time by amount z0=_0/cz.

However, as a is usually very large, on the order of 10 +12, z0 would be very small in

comparison to 8 and can be ignored in most cases.

5.2.2 RANDOM-PHASE CODING

Random-phase coding is a method used for removing range ambiguities. A

random-phase method was first applied in the RONSARD radar [84] using the

random phase inherent in the magnetron transmitter. The phase coding was used

to remove the bias in the estimate of the mean frequency due to overlying echoes by

measuring the transmitted phases and using them to compensate for the phases of

the received signals. At the receiver, only the echoes from the first trip were made

coherent, and all the overlaid echoes from other trips were incoherent and appeared
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as increasedwhite noise. Therefore,the bias in the estimateof mean frequency
causedby interferencecouldbe reduced.

Laird suggesteda phase-codingschemein whichthe phaseof thetransmitted

pulse is codedwith binary random number 0or rc[85l. By employinga coherent

reference,this schemecould re-cohereradar echoesfrom any particular trip and

make the echoesfrom other trips appear like white noise. However,becausethe

phase coding method only spreads the energy of interference echoes in the

frequencydomain,and doesnot reducethe total energyof the interferenceechoes,

only one trip can providea sufficiently largeSNRfor reliablemeasurement. As a
result, therandomphasecodingmethodhas limited use.

Therefore,the random phase-codingschemecannot effectivelyrecoverthe

echoesfrom a trip ff the energyof interferingechoesfrom other trips is strong. For
this reason. Siggiadevelopedan adaptive filter for processingthe random phase

coded radar signal [86]. The adaptive filter can reduce the effect of interfering

echoesand increasethe effectiveSNR. However,a significant improvementcan be

achievedonlywhenthe spectrumof the radar echohasa narrowwidth [87],and this
method is computationally intense.

Computer simulations of ambiguity functions for three different phase-

codedpulsetrains werepresentedin Figures5.2, 5.3 and 5.4. Figure5.2 showsthe

ambiguity function of a uniformly spacedpulse train with no phasecoding. As

expected, the uncoded pulse train generates periodic range and frequency

ambiguities. Figure 5.3 showsthe ambiguity function of a uniformly spacedpulse

train with random phase coding as used in [85]. We can see that the range

ambiguitiesare reduced,the energyof interferencesis distributed acrossthe whole

Nyqulst interval and acts like white noise. However,the frequencyambiguitiesare

unchanged. A similar statementcan be applied to Figure 5.4, which showsthe

ambiguity function of a uniformly spacedpulsetrain modulatedwith a 13-bit long
Barker-code.
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a)

bl

Figure 5.1. Examples of ambiguity function: a) ambiguity function
for single rectangle pulse, b) ambiguity function for single linear FM
modulated pulse. Absolute value shown for response function.
Ambiguity function is square of response function, but contrasts are
too great to show effectively on a 3-D graph. All other graphs m
Chap. 5 labeUed "ambiguity function" are actually response-function
magnitudes.
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Figure 5.2 Ambiguity function of uniformly spaced pulses in which
the pulse shape is Gaussian and total pulse number is 30.

Figure 5.3. Ambiguity function of uniformly spaced pulses with
random phase coding, the total pulse number is 30.
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Figure 5.4. Ambiguity function of uniformly spaced pulses with
Barker phase coding, the total pulse number is 13.

In summary, random phase-coding methods can be used to correlate signals

returned from a specific trip and make the echoes from other trips appear llke white

noise. Thus, the frequency measured will not be greatly biased by the interference

from other trips. Taking another point of view, the phase coding methods can be

viewed as multiplying the transmitted pulses by a random signal sequence in the

time domain; therefore, without a matched receiver, the spectrum of the received

signal would look like white noise too.

However, the random phase coding does not reduce the total energy of the

interference. Instead, it spreads out the spectrum of the interference over the entire

Nyquist interval. Therefore. the interferences would act like white noise and

deteriorate the SNR if proper filtering were not applied. Since only the signal

returned from one particular trip would have large enough SNR ( > 3 dB) for reliable

estimate of the mean Doppler frequency, in practice the random phase-coding

scheme may not be able to retrieve the mean frequency from echoes of an arbitrary

trip.
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5.2.3 DETERMINISTIC PHASE CODING

Zmic and Mahapatra further studied the adaptive filter method discussed by

Siggia for processing random phase-coded signals, and concluded that effective

improvements in suppression of overlaid echoes are possible only when overlaid

echoes have narrow spectral widths [87]. Sachidananda and Zrnic proposed an

alternative phase coding method which can reduce the correlation of an overlying

echo signal to zero at one-pulse lag [88]. With this phase coding, the covariance

("pulse-pair") estimator can give an unbiased estimate of mean frequency in

presence of overlaid echoes from adjacent trips. The sequence of codes they

suggested is n/4. -n/4, 5/4 .... At the receiver a sequence of -n/4, 0, -n/4 .... is used to

correlate the first trip echoes, and a sequence of 0, -n/4,0 ..... is used to correlate the

second trip echoes. This phase-coding scheme can make the autocorrelation

functions of either the first trip echoes or the second trip echoes equal to zero.

Therefore, the measurements of the mean frequency for either the first pulse or the

second pulse are not affected by echo overlaying, provided that the overlaying of

echoes is only due to two adjacent pulses.

The ambiguity function of a pulse train with such a coding scheme is shown

on Figure 5.5. Figure 5.2 shows the ambiguity function of a corresponding pulse

train without phase coding. One interesting point to note here is that one can arrive

at a conclusion similar to that drawn from [88]. That is, all of the peaks of the range

ambiguities from even trips are reduced to zero along the z (_=0] axis. This is

expected since the ambiguity function is reduced to the autocorrelation function

along the z axis. However, we also found that this scheme shifted the peaks of the

ambiguities along the _ ---k_T, + 31"... axes towards the z axis for all of the even trips.

This means that the unambiguous frequency for the second trip echoes are reduced

to a smaller range.

From the above discussion, we can conclude that all the phase coding

methods can be used to reduce the range ambiguity which results in flattening the

peaks of the ambiguity function on the _ plane. However, the distances between

these peaks along the frequency axis is not changed by the phase coding methods.
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As a result, the maximum unambiguous frequency remained unchanged. Therefore,

phase coding is suitable for high PRF situations where the frequency ambiguity is

not a problem.

Figure 5.5. Ambiguity function for uniformly spaced pulses with
-_/4, _/4 ..... -_/4, _/4 inter-pulse coding.the pulse shape is Gaussian,
and total number of pulses is 30.

One other problem with the phase-coding methods is that the leakage from

the transmitter may interfere with the receiver's operation if the isolation between

the transmitter and receiver is not nearly perfect. This may be a serious problem

for a chirp radar as an expanded pulse olden lasts several tens of mlcro-seconds, and

during the transn_itting period the receiver cannot receive useful signals.

5.3 MULTIPLE PRF AND FREQUENCY AMBIGUITY REMOVAL

There have been many staggered PRF or PRT methods proposed for solving

range and frequency ambiguities. Hennington (1981) suggested a method of

transmitting a train of short pulses following by a long pulse to reduce the
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frequencyambiguity of the targets [89]. The long pulse was used to estimatethe

reflectivityof the targets;the short pulseswereusedto estimatethe momentsof the

frequencyspectrum. However,this schememaynot beapplicableto a spreadtarget.
Sirmans et al suggesteda staggered-prfmethod using two or moreprfs to extend

unambiguous frequencies [90]. Similar methods also were proposed by
Sachidanandaand Zrnic [88]and Ludloff and Minker [91]. In the remainderof this

section,wewill examineonlytwo of thesemethods:the methoddiscussedby Ludloff
and Minker will be called "STAGGERED PRF METHOD-A," and the method

discussed by Sachidananda and Zrnic will be called "STAGGERED PRF

METHOD-B."

5.3.1 STAGGERED PRF METHOD u A

This algorithm was intended to be used in solving the blind speed problem of

a MTD ( moving target detector) radar [91], but it may also be applied to Doppler

weather radar applications. The algorithm resolves the frequency ambiguity by

illuminating a target with a set of pulse bursts with different PRF's Fk, where
A

k=1,2 ..... K. Let f0,k be the measured Doppler frequencies associated with prf F k.

These measured frequencies may be different from the true frequencies because of

frequency aliasing. However, for each prf Fk the true frequency can be found among
A

the following fi,k frequencies:

_i,k = f0,k + Ik Fk i= .... -1,0,1,... (5.8)

To search for the true frequency, the algorithm systematically searches for those

integers Ik that cause all estimates fi,k with different k to fall within a small

frequency interval or correlation bin. The average of the estimates provides an

improved estimate fT with reduced standard deviation
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K
 T=iE ^

K k=l (f0,k + IkFk)
(5.9)

and extended unambiguous frequency because _T may be much larger than any Fk.

From now on, let us consider the case that K = 2 with the stagger ratio

FI:F 2 = m:n

where m and n are relatively prime numbers and m < n by definition. The expanded

unambiguous frequency interval is

fu = nF1 =mF2 (5.10)

pRQBABILITY OF FALSE CORRELATION

Although this algorithm reduces the standard deviations of the estimates of

the mean frequency, it does introduce false correlation occasionally. The false

correlations occur mainly at those locations where fi,k frequencies approach one

another with the minimum possible distance dmin in frequency. There is a simple

relationship between dmin and Fk given by [91]:

_F2_m F
dmin- n -n2 1

(5.11)

Let us assume the estimates are normally distributed. Then, if we define the

difference between the two estimates as x, the probability density function for x has

the following form :
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/

p(x) - 1 p_.ex (5.12)
(x - x)2 "_

2(c21 2 J+ a 2)

where xis equal to 0 for a true frequency measurement and equal to dmi n for false

measurements. Since

if we let F2 = 1, the false measurement probability can be approximated as:

03In
A

P((f - fT)> 0.5 dmi n) =1 - S p(x) dx
-0.5/n

0.5/n

= - - dx (5.131

al'_2_( I + 2a ((m/n)2+ I)

-0.5/n

Here, a I is approximately a linear function of the spectral width of the signal. As a

result, when the standard deviation of the power spectral density increases, the

probability of false measurement also increases as shown in Figure 5.6. It also can

be observed that the difference between the false measurement and the true

frequency is usually one or more Nyquist intervals. Thus, it is possible to correct

these false estimates by continuity or the method we are going to discuss in the next

section. The fi,k can be estimated with the FFT method, the AR method, or the

covarlance method.
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Figure 5.6. Simulation of STAGGERED PRF-A method, a) _ = 0.1, SNR
= 0 dB, b) _ = 0.3, SNR = 0 dB. Normalized frequencies are shown.
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5.3.2 STAGGERED PRF METHOD - B

This staggered PRT method was described by Zrnic and Mahapatra [87]. In

this scheme, the pulses are transmitted alternatively with two different pulse

repetition intervals, TI and T2. The frequency estimate is determined by a formula

derived from the covariance method:

1 (R(T2)_
fT- _(T 2 - T 1) arg _R(T1))

1 (R(T2)'_

-_T2(1- K)arg _.R--_J
(5.14)

where R(t} is the autocorrelation function of the radar echoes, and K is a constant

equal to T1/T2. The maximum unambiguous velocity depends on the difference of

TI and T2, and is equal to:

1

fmax ---n(T2 _ T1 ) (5.15)

The variance of this estimator can be derived from (5.14),

V AR(_) = I
n(T 2 - T I) VAR(01 - 02)

(5.16)

where 01 and 02 are equal to arg(R(Tl)) and arg (R(T2)). A more detailed analysis can

be found in [87]. From this equation, we can observe that the standard deviation of

the estimate increases as the difference between T1 and T 2 decreases. The results of

a computer simulation are presented in Figure 5.7. These results indicate that the A

method is superior to the B method in terms of RMS errors; however the B method

does not give false estimates (individually big errors}.
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Figure 5.7. Simulation of STAGGERED PRF-B method with T1/T 2 =

0.875, a=0.3, SNR = 0 dB. Normalized frequency is shown.

5.3.3 RANDOM PULSE POSITION CODING

The multiple PRT methods discussed above can be classified as special cases

of random pulse position coding. The general pulse train with pulse-position coding

and phase coding can be expressed as:

y(t) = N- 1 eJ_n(t_nT_An)
,___u(t - nT 0 - An) (5.17)

n=0

where an is the displacement from nT0 and %n represents the phase coding. The

form of the ambiguity function for equation (5.17) and the properties of the

ambiguity function of the position coding were reported in [92]. We will not proceed

further on this topic.
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5.4 WAVEFORM MODULATION AND AMBIGUITY REMOVAL

5,4.1 WAVEFORM MODULATION REDUCES RANGE AMBIGUITY

The current algorithms developed for removal of range and frequency

ambiguities are primarily involved with inter-pulse coding in either phase or time.

In this section, we will discuss the utilization of waveform modulation on

transmitted pulses to reduce range ambiguities. Furthermore, as shown later,

waveform modulation can be combined with the covariance method discussed in

Chapter 4 to solve the frequency-ambiguity problem.

Waveform design has found many applications in radar and communication

systems. In radar systems, waveform design is often related to clutter rejection and

pulse compression. In communication systems, it is used in the area of spread

spectrum communications for code multiplexing [93 - 94].

The basic concept of waveform modulation for range-ambiguity reduction

can be illustrated in an example from code multiplexing in a communication

system. Waveform modulation allows two different signals to be transmitted in the

same bandwidth and time interval, and at the receiver, the two signals can be

separated by the process of correlation detection. This can be shown

mathematically: assume sl(t) and s2(t) are two different waveforms(or codes), and

sl(t) + s2(t) is the receiver input. For receiving signal sl(t), a reference signal sl(t) is

used at the receiver to correlate with the input signal. Let T be the signal integration

time, and the correlator_s output may be expressed as:

T
I P

y(t) = _ ](st(t)
0

+ s2(t))sl(t) dt

T

1 2

=T f sl(t}
O

T

1 f sl(t)s2(t) dtdt +_

0

(5.18)
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The first term in (5.18) is the signal output and the second term represents
interferencefrom s2(t). The interferencelevelis thereforedeterminedby the cross

correlationof s1(t)and s2(t). Theusefulnessof sucha systemis determinedby the

crosscorrelation of the codesused. Thereare various coding techniques, such as

Barker codes, m-sequence, and random phase-coding. Most of these codes are able

to keep the sidelobe at the level of 1/N of the main lobe, with N is the total length of a

code [94].

Instead of using discrete coding (mostly binary), we may consider using

continuous waveform modulations. The main task is to find a set of continuous

waveforms with low cross correlations and study the effective SNR at the receiver.

One such candidate is linear frequency modulation (FM), also known as chirp. For

example, two pulses modulated with different linear-FM waveforms may have low

cross correlation. To simplify the following discussion, we consider waveforms

having the same time intervals and bandwidths. There may be many other linear

or non-linear FM waveforms with low cross correlations. However, the discussion

of those waveforms is beyond the scope of this study.

Assume two Gaussian pulses u(t) and v(t) are modulated with conjugate linear

FM, namely the first pulse in the pair is modulated with up chirp and the second

with down chirp:

u(t) = (2a) 1/4 e-_at 2 + j_at 2 (5.19)

v(t) = (2a) 1/4 e-=at 2 - j=(xt2 (5.20)

where (2a) 1/4 is a constant to normalize the maximum value of the ambiguity

function to 1. The second assumption made is that the pulses are transmitted in

pairs spaced by a time interval T2. The transmitted pulse-pair train is expressed as
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N-1

y(t) = Eu(t - nT 1) + v(t - nT 1- T2) (5.21).

n=0

At the receiver, there are two channels. One is matched to the signal u(t) and the

other iS matched to v(t) as shown _ Figure 5.8. The output from channel I and

channel II are given as correlations between the received signals and the impulse

response of the matched filter.

Channel I

Channel II

Match Filter I

of Channel I

Match Filter Iof Channel II

Figure 5.8. Configuration of dual-modulation receiver.

v

v

To examine the output of each matched filter, we need to calculate the

ambiguity function and cross-ambiguity functions of the waveforms represented by

(5.21). In fact, the cross-amblguity functions are the outputs of the matched filters.

The ambiguity function of such a pulse train can be calculated from the following

integral:
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+OO

Sy(Xu(X,_))-- t)y (t+ x) dt

= XZu(X,¢) + XZv(X,¢) e-J27t_bT2+ XZuv(X - T2, _)

+ XZvu(* + T2,¢} e-J2_tCT2 {5.22}

The analytical forms of XEu, XEuv,XX v and XXvu are listed below.

derivation of these functions is included in Appendix 5.A.

XXu(X,¢) =<

r" N-1

sin((N-m)T07t¢)

_e'JX(N- l-m)OT0Xu(_-mT0"¢) sin(_T0¢ )

m=-(N-1)

when ,,Iz-mToI _<

0 elsewhere

A detailed

XXv(Z,¢) ='

N-1

Z sin((N.m)T0rt¢ )e'Jrt(N- 1-m)¢T0Xv(x-mT0 '0) sin(rtT0¢ )

m=-(N-1)

when , ,I x-mT0 I <_.5

.0 elsewhere

- 132-



XXvu('_,_)=<

N-1

Z sin((N.m)T0rc_ )e-Jn(N- I-m)_TOXvu (x-mT0'_) sin(_T0_ )

m=-(N-1)

when I  'mTo I <-

,0 elsewhere

XXuv(X,_) ='_

• N-1

sin((N-m)T0n_))

Z e-J_(N- 1-m)d_TOXuv(X-mT0 "_) sin(_T0_))

m=-(N-1)

when I x'mT0 I < _i

.0 elsewhere

Also from appendix 5_, we obtain

(5.23)

(5.24)

(-ax2 + (-oft2 -2_bz+ )
Xuv(XAb)= a e'2" a2 + ct2Je'12 (5.25)
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"_/a+_ "_(-az2+ a¢2 )e_(-at2+2¢z+_)%uv(_,¢)= e 2 a2 + a2
(5.26)

The outputs from channel I and II are the cross correlations:

channel I: %Zu(_,_) + %Zuv('C-T2,_) (5.27}

channel II: XZv(Z,_) + %Zvu(Z + T2,¢) (5.28)

In equations (5.27) and (5.28), the first terms represent the signal outputs

from the matched filters and the second terms represent interference. The

ambiguity functions and cross-ambiguity functions given in equation (5.27) and

(5.28) are plotted in 3D drawings in Figures 5.9 and 5.10. It can be observed that the

energy levels of the interference at each channel are much lower than that of the

main lobe. In fact, it can be shown that the interference levels are approximately

equal to the inverse of the time-bandwidth (BTI products of the waveforms.

For a single target, the effective ratio of signal and interference can be

calculated by the following equation:

i xz.(o,o>12 _/.2 +j (5.29)

We are going to prove that the above expression is equal to the time bandwidth

product of a pulse. Let the chirped pulse width be 5. The bandwidth then is

approximately equal to _, and the tlme bandwidth product, BT, is equal to

BT = 8 aS
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The parameter a and the pulse width 8 are related as follows

1

If we substitute these equations into (5.29), the effective signal to interference ratio

becomes

_J a2 + c_2

aT - _1 + (BT)2 v_BT

(5.3O)

Equation (5.30) above shows that the effective SNR for a single target is

determined by the time bandwidth product of the FM modulated signal. By choosing

large time bandwidth products for the transmitted pulses, we can reduce the

interference level to an arbitrarily small value.

Figure 5.9. Ambiguity function of dual linear FM modulated pulse
train. T2 = 0.3 TI, time bandwidth product = 10.0
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a)

b)

Figure 5.10. Cross ambiguity functions, a) as an output of channel I,
b] as an output of channel 11.
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However, in weather radar the target is always spread. The above

calculationof effectiveSNRcannotbe usedfor a spreadtarget. Theinterferencecan

becalculatedfrom equation(5.3). However,from observingthe plot in Figure 5.I0,

the domainof integrationcanbesimplified to the arearepresentedby the product of
the time duration (T2-8,T2+_) and frequencyinterval (_oo,+oo)Since echoesonly

from this areacancontributeto the interference. DenoteC as the voltageoutput of
the total interference,it canbeshownthat (Appendix5.A):

T2+8 +_
C = ._ S Xuv('_'T2,_) d_d_

T2-_ --

_/2a= a-Ja (5.31)

Therefore, the effective signal to interference ratio is equal to

S I_(0,0) 12 "_a 2 + o_2 BT

C-'2= C2 - 2a - 2 (5.32)

In calculating the spread target interference, we made the assumption that the

refelectivity of the distributed target in the integral domain is constant.

5.4.2 AN APPLICATION

a) In the waveform discussed in the previous section, each pulse in a pulse-

pair is transmitted with the same carrier frequency, same bandwidth, and same

envelope but opposite slopes of linear FM. Because the two pulses are transmitted

with the same carrier frequency, the coherency of the returned signals from the two

pulses in a pulse-pair is guaranteed if these signals are returned from the same

resolution volume, The covariance method can be used to estimate the mean

frequency from each pulse-pair. As discussed in chapter 4, the covariance method

does not depend upon the inter-spacing between two adjacent pulse pairs.
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Sincethe maximum unambiguousfrequencyonly dependsupon the length
of T2 and the maximum unambiguousrangeonly dependsupon the length of T1+

T2, the lengths of T1 and T2 can be adjusted to achievea desiredunambiguous

frequencyand range. Although the plot of the ambiguity function showsthat this

schemecannot removethe peaksof the frequencyambiguities,wecan still use this

schemeto get the correctmeanfrequencyof the spectrum. As the two pulsesin one

pulse pair are in the samebandwidth and have the samecarrier frequency, the

echoesfrom the twopulsescanbecoherentif the transmittedpulsesarecoherent.

6

........ Mean Frequency ,eo4
.,B"4 • Estimate .4

°4

,_"

o 0 °h.4.h *_

.2 ...4

,.o"
-4 oo4

e"

-6 . i , i . i . i . i • i

-6 -4 -2 0 2 4 6

Mean Frequency (Hz)

Figure 5.11. Simulation of waveform modulation method for
estimating first moment with extended frequency range, with one
run, ¢_=0.3, SNR=10 dB.

In summary, the waveform modulation allows us to achieve high signal to

interference ratios and to obtain coherence between the pulses. The radar echoes

from the two pulses in a pulse-pair are separated through two matched filters. The

frequency ambiguity is reduced by the pulse pair method with two PRT's (TI and T2).

A computer simulation of this algorithm is presented in Figure 5.11 (with

measurements as a function of mean frequency). This figure shows that the

waveform modulation method produces smaller errors in estimation than the

STAGGER-B method.
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STAGGER-B method.

b) Furthermore. we can combine a) with the inter-pulse coding method. For

example, we can code the pulse train with a random binary phase coding: each pulse

pair is multiplied by a random binary phase either 0 or _. One such an example is

given in Figure 5.12. By comparing Figure 5.12 and Figure 5.9, we can see that the

peaks of the range ambiguities are further reduced by the random phase coding.

More important is the fact that the spectrum of the interference is flattened. This

can reduce bias in our estimate of the mean frequency. However, one needs to notice

that the effective signal-to-interference ratio is not being reduced by the random

phase coding, only the spectrum of the interference is flattened.

Figure 5.12. Ambiguity function for the same pulse train as in Figure
5. I0. except random phase coding was applied.

5.5 RESULTS AND CONCLUSIONS

5.5.1 THE SIMULATOR

Two simulators were used in this chapter. One simulator written in C

language was used to study the ambiguity functions for the dfferent algorithms

discussed This simulator allows the user to specify parameters such as the pulse
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length, pulserepetitiontime (PRT),typeof inter-pulsecoding,and numberof pulses
in the pulse train, etc. The resulting ambiguity functions are plotted with 3-D

hidden-line drawingson the computer screen. The secondsimulator is similar to
the oneusedin Chapter 4. This simulator is used for Monte Carlo simulations of the

algorithms discussed in this chapter, with specified parameters such as SN'R,

number of runs, spectral width of the signals, etc.

5.5.2 MONTE CARLO SIMULATION

Monte Carlo simulations have been used to compare the performance of the

three algorithms discussed in this chapter: STAGGERED PRF-A, STAGGERED PRF-

B and waveform modulation methods. As in Chapter 4, the results are presented

with RMS errors as functions of SNR, spectral widths of the signals, and mean

frequencies of the signals.

The data used in the simulations were generated with Gaussian shaped

spectral density functions with different SNRs and spectral widths. In the

simulations of the staggered PRF-A method, two different PRF's were used with a

ratio of F1:F2=7:8. In the simulations of staggered PRF-B method, two PRT's were

chosen with the ratio of T2:Tl=7:8. In the simulations of the waveform-modulation

method, the ratio of inter-spacing of the two pulses in a pulse pair and the spacing

between pulse-pairs is chosen to be 1:7. All the three estimators should have

unambiguous frequency ranges as large as seven times the Nyquist interval.

All the computer simulations are based on the normalized Nyquist

frequency interval defined as [-1,1]. The mean frequencies of the input data change

from -5 to 5 with specified steps. This frequency range is 5 times the Nyquist

frequency. Figures 5.14 to 5.16 illustrate the Monte Carlo simulations of the RMS

errors as functions of the SNR and mean frequency. Figures 5.17 to 5.19 show the

Monte Carlo simulations of the RMS errors as functions of spectral widths of the

input data and SNRs. From these results, we can draw the conclusion that the

STAGGERED PRF-A method produces the smallest RMS errors, followed by the
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waveform-modulationmethod. The STAGGEREDPRF-Bmethod produces RMS
errors which are approximatelyan order of magnitude larger than thoseof the
STAGGEREDPRF-Amethod.

However,the STAGGEREDPRF-Amethod is not without its disadvantages.

When the spectralwidth of the signalis largecomparedwith the Nyquist frequency
(_/fN > 0.3),the STAGGEREDPRF-Amethodproducesa significant number of false

correlationsas shownin Figure 5.16a. TheRMSerrors producedby the waveform-

modulation method do not changevery much as the spectral width of the data

changes.
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5.5.3 CONCLUSION

Among the algorithms discussed in this chapter, the staggered PRF-A

produces the smallest RMS errors of these three algorithms when the spectral width

is less than 0.3. The staggered PRF-B method produces the largest RMS errors

among these algorithms. For all these algorithms, the RMS errors increased as the

SNRs decreased. For the staggered PRF-A and PRF-B methods, the RMS errors also

increased as the spectral widths increased. In the computer simulation, for the

waveform modulation method, the RMS errors did not change very much as the the

spectral widths of the radar signals increased.

In the RAWS system, the spectral widths of the radar echoes are about half of

the Nyquist interval. In such a case, the PRF-A method has very large probability of

false measurements, about 20% at 10 dB SNR and 30% at 5 dB SNR. The RMS errors

produced by the waveform modulation are about 7% of the Nyquist interval at 10 dB

SNR, and about 12% at 5 dB SNR. The staggered PRF-B method generates too large

RMS errors to be used in this system. Assume that the PRF is 3500 Hz. Then the

Nyquist interval is 1750 Hz. Therefore, the waveform modulation method will

generate about 122 Hz RMS errors in the estimates of mean frequencies at 10 dB

SNR, and about 210 Hz at 5 dB SNI_
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APPENDIX 5.A AMBIGUITY FUNCTION FOR WAVEFORM MODULATION

To derive the ambiguity function for the waveform modulation method, we

first need to review some basic formulas often used in deriving ambiguity functions

and the ambiguity functions for some simple waveforms and pulse trains.

BASIC FORMULAS

fost2 t: 
-OO

F( e"st2) = _e -¢a2/4s

(5.33)

(5.34)

+oo 2 = _e_2/aS e'(at + 2[_t) dt
-00

(5.35)

9-o,0

f e j2nxa(x'b) dx = _a(x-b))
.00

(5.36)
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AMBIGUITY FUNCTIONS FOR A SINGLE PULSE

RECrANG_ PUI_E

For a rectangular pulse,

_- I

The ambiguity function for a rectangular pulse is given in the following form:

Zu(,,¢) =

+00

J'u(t) u*(t+x) e"j2xCt dt

O0

+8/2

!_ * e-J27t_t
= (t) u (t+x) dt

f x _jn¢x ((5..{xl)sin(x¢(5_.lx{))){¢{<6
Xu(X'*) = rect (_-_) " 7t_(5-- I x I) " -

0 elsewhere (5.37)

SINGLE FM RECTANGULAR PULSE

For an FM rectangular pulse,

I
u(t) = _rect _-) ej_'t2

The ambiguity function is
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,. (5.38)

AMBIGUITY FUNCTION FOR SINGLE FM GAUSSIAN PUI_E

For a Gaussian pulse

u(t) = (2a) 1/4 e-_at2 + jrmt2 (5.39)

The ambiguity function is

Zu(Z,_) = ¢]n':¢_e-rd2(az2 + (az: (_)2] (5.40)

AMBIGUITY FUNCTION FOR A PULSE TRAIN

Assume

N-I

y(t) = E u(t - nT 0)

n=0

(5.41)

The ambiguity function for a pulse train is defined as

Jroo

N-1 N-1(.

zy(_,_,)-- | E u(,-,%) :Zu'(_-kT0+_)o-j2,_,_dt
in=0 k=0

OO

(5.42)

AssumeT0> 25, if [_-mT 0 I <8
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+OO

N-1

[ ,___u(t - nT 0) u*(t - (n + m)T 0 + x) e -j2_¢t dt

J n=0
OO

N-1

= u(t - nT 0) u*(t - (n + m) T O+ x) e -j2r_t dt

n=0

Zu(X -mT 0, ¢)

N-1

_e_2n_T0

n_

sin((N-m)T0rcd_)

= Xu(X - inTo, _) eJ(N'l-m)T0 _ sin(nT0¢ )
(5.43)

If Ix + mT 0 [ <8

"1-OO

N-1
,__u(t - nT 0) u*(t - (n - m)T 0 + x) e"j2_t dt

n=0

°OO
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4-00

Ei I= u(t -

n=0

OO

nT 0) u*(t - (n - m) TO + z) e-j2_d_t dt

= Xu('C+ mT O, _)

N-1

sin((N-m)T0n_)

= Xu(X + mT o, _) eJ(N-l+m)T0_ sin(_T0_ )
(5.44)

So, the ambiguity function for a pulse train is

N-I

_e-Jn(N- 1-m)_ToZu('C-mT0,d_)

Xy(X,_) =¢ m=-(N-1)

o I -mVoI

sin((N-m)Torc_)

sin(_T0_)

(5.45)

AMBIGUITY FUNCTION FOR DUAL WAVEFORM MODULATED PULSE TRAIN

Assume that ylt) is the sum of two different waveforms u(t) and v(t) where v(t)

lags u(t) byT. The ambiguity function ofyR) can be written as:
%,o

_y(_,(_) = f(u(t) + v(t-T)) (u*(t+_) + v*(t - T + _11 e"j2/_t dt
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= Xu('t,_) + Xuv('C-T,¢_) + Xvu('C + T,_)) e -j2_T + Xvv(Z,¢_) e-j21t_T (5.46)

Similarly, we can derive the ambiguity function of a pulse pair train. Assume that

the pulse train can be represented as:

N-1

y(t) = Zu(t - nT 1) + v(t - nT 1- T 2) (5.47)

n=0

where T 2 < T I and twice the pulse duration 28<T 2. Thus, the ambiguity function is

defined as

_u(Z,O =

+OO

fy(t)y*(t + z) dt

OO

N-1 N-1

Z Z
n--0 k=0

+OO

j" u(t-nT1)u*(t-kTl+Z) e -j2_#t dt

OO

+

N-1 N-1

Z Z
n--0 k=0

4"O0

f u(t-nT1)v*(t-kT1-T2+ z) e"j21tc_tdt

N-1 N-1

+X X
n--0 k=0

-bOO

f v(t-nT1-T2)u*(t-kTl+ "t) e -j2nCt dt

00

- 154-



-bOO
N-1 N-1

]_ f v(t-nT1)v*(t-kT1-T2+ _) e-j2_c_t dt
n--0 k=0

_OO

=/_.u('C,O) + %y.v('LO) e-J2_(_T2 + %_uv(Z - T2, _)

+ %Zvu(X + T2,O) e'J2_¢T2

In special cases, the pulses in a pair are linear FM

opposite frequency modulation as shown below.

(5.48}

modulated with an

u(t) = (2a) 1/4 e-nat2 + j_at 2

v(t) = (2a) 1/4 e-_at2 - j_at 2 (5.49)

/p

Since v(t) = u (t) and from the properties of the ambiguity function, we know that [83]

Xu(_,_)= Xv(_, -¢_) (5.50)

so from (5.40), we can derive Xv(Z,_)),

%v(Z,_) = e j_z_ e-g/2Iaz2 + (°c_(_)21 (5.51)

The cross ambiguity Xuv(Z,@) can be derived from the following integral:
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+00

Xuv(X, ¢) = J"u(t)
O0

v*(t + x)e "j2r_(l)xdt

-t-00

;1= 2a)2 e -n(a - ja)t2 e-_(a - ja)(t + X)2e-2_¢t dt

O0

"bOO

°00

"l-O0

1 f= (2a)2 e"=(a - a)x2 _ e-2=(a - J°O(t2+(x + _)t)a-ja dt

O0

If we let a = 2_(a-ja) and I] = n(a-ja)(x + j¢ I by equation (5.35), the above integral is
a-Ja "'

equal to

a r_ . 2 2x°t_)2 a2)4 )2

(a 2 + ct2) 2
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j2_a_, j2aa(_2 "[1

+a2+a 2 (a2+cz2)2Jj

= _a - ja a2 + ¢z2 e-_ ('et2"2_z + a2+ az (5.52)

As u(t) = v (t), it can be shown that guv(Z,_) = Xvu(Z,O}. It follows that

Xvu (zA)) = _a_ja e 2 (az2 + a 2 + o_2

e_- (-at2 + 2_z + (5.53)
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EFFECTIVE SIGNAL-TO-INTERFERENCE RATIO

The total interference at the output of a matched filter can be approximately

calculated as:

+5+oo

C = _f S Xuv (x'(_) d'_d_
O0

"bOO - ,'_

= a e-2 (a-jcx)'c - j2¢z + _ [dzd¢
_ a+a _a

"bC_O

+ a2+ a2Y Jd_dz

_Se-_a-ja),_2-_J 2(a2 +o_ 2) _a2+(z2z2= a+ja e2 a+ja

+_

= _ S e__ta _ ja)_2 d_

_5

d'c

(5.54)
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Chapter 6

Conclusions
Future Work

and Recommendations for

The major focus of this research was a system study of a Doppler radar used

for global wind measurements. In addition to studying cloud modeling and the

system configuration, such as antenna scan pattern, we discussed algorithms for

estimating the first moment of power spectra of radar signals, and algorithms for

reducing frequency and range ambiguities of Doppler radar systems. The results can

be summarized as follows:

(1) In Chapter 2 we reviewed volume backscattering of radar echoes from

clouds. For three different types of cloud, we simulated the SNRs of the radar

echoes. The results demonstrated that, from the SNR point of view, frequencies of 35

GHz or higher are needed to obtain high enough SNRs of radar echoes from these

types of clouds, presuming the radar system has enough power and enough gain of

the antenna. Although the results were based only on water-cloud models, ice

clouds tend to have larger reflectivity than water clouds. The SNRs from ice clouds

will be larger than those from the water clouds with the same system parameters.

However, in the computer simulations, the cloud models were based on an

analytical drop-size distribution formula, and these drop-size distributions may be

quite different from the drop-size distributions found in practice. Therefore, more

realistic cloud models may need to be developed in future study.

(2) In Chapter 3, we discussed the system configuration of the radar wind

sounder. Three different antenna scan methods were discussed,and the result

revealed that a combination of uniform and discrete antenna scanning would result

in acceptable pointing errors and cost. We also discussed a tracking method to

estimate the Doppler frequency shift caused by satellite motion. The tracking is

through a combination of satellite inertial navigation system and a second-order

phase-lock-loop. The result of a computer simulation with a step input function
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showedthat for givenantenna pointing errors, and parameters of the phase-lock-

loop, this method can achieve very small RMS errors (several Hertz) in a steady

state. However, the simulation was crude since the clutter echoes used as the input

signal of the tracking system may be much different from the input signal used in

the simulation. More thorough analysis of the tracking system and more accurate

models of the tracking system and input signal need to be developed in future study

of RAWS. In addition, different tracking methods, such as a Kalman filter, may also

need to be considered in the future study.

(3) We also conducted an error analysis in Chapter 3, and the result showed

that error caused by satellite pointing angle is an important factor to the system

performance. To achieve the required accuracy (lm s'l), a large number of

independent measurements needs to be averaged. The error analysis was based upon

the error in measurement of the mean Doppler frequency and estimate of the

Doppler shift caused by satellite motion. However, these estimate errors and

measurement errors are usually functions of the SNR of the received signal. An

error analysis concerning SNRs of the system may need to be performed in the

future study.

We also pointed out in Chapter 3 that clutter rejection is an important issue

in the design of RAWS. However, in this dissertaUon we did not discuss this

problem. This topic should be leR as a topic of future study.

(4) In Chapter 4, we discussed several algorithms for estimating the mean

Doppler frequency: the FFT estimator, the covariance estimator, and the

estimators based on autoregressive models. The covariance estimator produced

slightly smaller RMS errors than the FFT estimator and the autoregressive-model-

based estimators in thecomputer simulations. However, these results were derived

under the condition that the power spectrum of the radar echo is symmetric and has

only one peak. In practice, interference caused by leakage from the transmitter, or

clutter, may cause the returned signals to have non-symmetric spectrum or

spectrum with more than one peak.
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The performanceof the FFT estimator and the AR-basedestimators are

affectedby the noise and alias of the frequency of the radar echoes. A noise-
suppressionmethodwasdiscussedin this chapter. It caneffectivelyremovethe bias

causedbywhite noise. Wealsodiscusseda methodfor removingthebias causedby

frequencyalias; this methodcanalsoreducethebiascausedby noise.

The FFT, the covarianceestimator,and theAR estimatorarecomparablein

terms of estimateerrors. Although,the RMSerrors in the estimatesdependonboth

the spectral widths and SNRsof the input signals. The RMS error is mainly a

function of the spectral width of the signal when the SNR is above5 dB. As

discussed,the spectralwidths of the signalsin RAWSareabout half of the Nyquist
interval. In such case,the RMSerrorsproducedby theseestimatorsdiscussedin

Chapter4 wereaslargeas 10%of theNyquistfrequency.That is, for a 3500-HzPRF,
the RMSerrors arearound 175Hz. This error is higher than the error limit (23Hz)

for the mean frequencyestimatesneededto produce the lm s"1 accuracyin wind

estimates.About64 independentmeasurementsmayneedto beaveragedto achieve

the requiredaccuracy.

(6) In Chapter 5, we reviewedseveralalgorithms for reducing the radar

ambiguities,such asa phase-codingmethodand staggeredprf methods. However,

thesemethodsdo not performwell whenthe spectralwidths of the radar echoesare

large ( > 50% of the Nyquist interval]. Therefore,a new method basedon using
differentwaveformmodulations on successivetransmitted pulseswas developedto

reducethe radar ambiguities. Monte-Carlosimulations were used to comparethe

performanceof this method with two staggered-prfmethods.The results showed
that when the spectral width of the signal increases, the RMS errors increase

rapidly with the staggered-prfmethods. However,the RMSerror for the waveform

modulation method does not changevery much as the the spectral width of the

radar signal increases.

In the RAWSsystem,the spectralwidths of theradar echoesareabouthalf of

the Nyquist interval. In such a case,the staggeredPRF-Amethod has very large

probability of falsemeasurements;about 20%at 10dB SNRand 30% at 5 dB SNR.
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The RMSerrorsproducedby the waveformmodulationare about 7%of the Nyquist

interval at 10dB SNR.and about 12% at 5 dB SN'I_ The staggeredPRF-Bmethod
generatesvery large RMS errors, over 50% of the Nyquist interval, when the

spectral width is equal to or greaterthan half of the Nyquist interval. In all these

computersimulations,the extendedmaximumunambiguousfrequencyis 7 times as

large as the Nyquist interval, For a 3500-Hz prf. the m_irnum unambiguous
frequencyis 12250Hz. In summary, the waveformmodulation method is the most

promising algorithm amongthe algorithmsdiscussedin this chapter to be used in
the RAWSfor estimatingthe Dopplermeanfrequency.
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